35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Widespread Cotranslational Formation of Protein Complexes

      research-article
      , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most cellular processes are conducted by multi-protein complexes. However, little is known about how these complexes are assembled. In particular, it is not known if they are formed while one or more members of the complexes are being translated (cotranslational assembly). We took a genomic approach to address this question, by systematically identifying mRNAs associated with specific proteins. In a sample of 31 proteins from Schizosaccharomyces pombe that did not contain RNA–binding domains, we found that ∼38% copurify with mRNAs that encode interacting proteins. For example, the cyclin-dependent kinase Cdc2p associates with the rum1 and cdc18 mRNAs, which encode, respectively, an inhibitor of Cdc2p kinase activity and an essential regulator of DNA replication. Both proteins interact with Cdc2p and are key cell cycle regulators. We obtained analogous results with proteins with different structures and cellular functions (kinesins, protein kinases, transcription factors, proteasome components, etc.). We showed that copurification of a bait protein and of specific mRNAs was dependent on the presence of the proteins encoded by the interacting mRNAs and on polysomal integrity. These results indicate that these observed associations reflect the cotranslational interaction between the bait and the nascent proteins encoded by the interacting mRNAs. Therefore, we show that the cotranslational formation of protein–protein interactions is a widespread phenomenon.

          Author Summary

          Most proteins do not function in isolation. Instead, they associate with other proteins to form complexes. Little is known about the assembly of protein complexes within cells. One possibility is that proteins are completely synthesised before they bind to each other. An alternative is that proteins attach to each other as they are being translated in the ribosome (called cotranslational assembly). To investigate if cells use cotranslational assembly to form complexes, we identified mRNAs associated with specific proteins. The expectation is that if protein A binds to protein B as protein B is being translated, A will associate indirectly to the mRNA encoding B. Indeed, we found that for ∼40% of proteins (out of a sample of over 30) this was the case. Proteins associated with a small number of mRNAs, most of which encoded known or predicted interacting proteins. We found examples of this phenomenon in proteins with different functions and structures, indicating that cotranslational assembly is widespread. Cotranslational assembly might be required for certain proteins to associate, or it might be important in cases where the early formation of a protein complex is beneficial, such as when a protein is toxic or unstable unless bound to a partner.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution.

          Recent data from several organisms indicate that the transcribed portions of genomes are larger and more complex than expected, and that many functional properties of transcripts are based not on coding sequences but on regulatory sequences in untranslated regions or non-coding RNAs. Alternative start and polyadenylation sites and regulation of intron splicing add additional dimensions to the rich transcriptional output. This transcriptional complexity has been sampled mainly using hybridization-based methods under one or few experimental conditions. Here we applied direct high-throughput sequencing of complementary DNAs (RNA-Seq), supplemented with data from high-density tiling arrays, to globally sample transcripts of the fission yeast Schizosaccharomyces pombe, independently from available gene annotations. We interrogated transcriptomes under multiple conditions, including rapid proliferation, meiotic differentiation and environmental stress, as well as in RNA processing mutants to reveal the dynamic plasticity of the transcriptional landscape as a function of environmental, developmental and genetic factors. High-throughput sequencing proved to be a powerful and quantitative method to sample transcriptomes deeply at maximal resolution. In contrast to hybridization, sequencing showed little, if any, background noise and was sensitive enough to detect widespread transcription in >90% of the genome, including traces of RNAs that were not robustly transcribed or rapidly degraded. The combined sequencing and strand-specific array data provide rich condition-specific information on novel, mostly non-coding transcripts, untranslated regions and gene structures, thus improving the existing genome annotation. Sequence reads spanning exon-exon or exon-intron junctions give unique insight into a surprising variability in splicing efficiency across introns, genes and conditions. Splicing efficiency was largely coordinated with transcript levels, and increased transcription led to increased splicing in test genes. Hundreds of introns showed such regulated splicing during cellular proliferation or differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basic methods for fission yeast.

            The fission yeast Schizosaccharomyces pombe is a popular model system, and has been particularly influential in studies of the cell cycle and chromosome dynamics. Despite its differences from Saccharomyces cerevisiae, the tools and methods for fission yeast are conceptually similar to those used in budding yeast. Here, we present basic methods sufficient for a beginner in this system to carry out most required manipulations for genetic analysis or molecular biology. Copyright 2006 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Network of Multiple Regulatory Layers Shapes Gene Expression in Fission Yeast

              Summary Gene expression is controlled at multiple layers, and cells may integrate different regulatory steps for coherent production of proper protein levels. We applied various microarray-based approaches to determine key gene-expression intermediates in exponentially growing fission yeast, providing genome-wide data for translational profiles, mRNA steady-state levels, polyadenylation profiles, start-codon sequence context, mRNA half-lives, and RNA polymerase II occupancy. We uncovered widespread and unexpected relationships between distinct aspects of gene expression. Translation and polyadenylation are aligned on a global scale with both the lengths and levels of mRNAs: efficiently translated mRNAs have longer poly(A) tails and are shorter, more stable, and more efficiently transcribed on average. Transcription and translation may be independently but congruently optimized to streamline protein production. These rich data sets, all acquired under a standardized condition, reveal a substantial coordination between regulatory layers and provide a basis for a systems-level understanding of multilayered gene-expression programs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2011
                December 2011
                1 December 2011
                : 7
                : 12
                : e1002398
                Affiliations
                [1]Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
                Sanford-Burnham Medical Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: JM CDSD. Performed the experiments: JM CDSD. Analyzed the data: JM CDSD. Contributed reagents/materials/analysis tools: JM CDSD. Wrote the paper: JM CDSD.

                Article
                PGENETICS-D-11-01765
                10.1371/journal.pgen.1002398
                3228823
                22144913
                deda7170-3fc5-484e-9299-0e4053daa8a0
                Duncan, Mata. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 August 2011
                : 11 October 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Protein Interactions
                Genetics
                Gene Networks
                Genomics
                Functional Genomics

                Genetics
                Genetics

                Comments

                Comment on this article