23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Limited Transcriptional Responses of Rickettsia rickettsii Exposed to Environmental Stimuli

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rickettsiae are strict obligate intracellular pathogens that alternate between arthropod and mammalian hosts in a zoonotic cycle. Typically, pathogenic bacteria that cycle between environmental sources and mammalian hosts adapt to the respective environments by coordinately regulating gene expression such that genes essential for survival and virulence are expressed only upon infection of mammals. Temperature is a common environmental signal for upregulation of virulence gene expression although other factors may also play a role. We examined the transcriptional responses of Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, to a variety of environmental signals expected to be encountered during its life cycle. R. rickettsii exposed to differences in growth temperature (25°C vs. 37°C), iron limitation, and host cell species displayed nominal changes in gene expression under any of these conditions with only 0, 5, or 7 genes, respectively, changing more than 3-fold in expression levels. R. rickettsii is not totally devoid of ability to respond to temperature shifts as cold shock (37°C vs. 4°C) induced a change greater than 3-fold in up to 56 genes. Rickettsiae continuously occupy a relatively stable environment which is the cytosol of eukaryotic cells. Because of their obligate intracellular character, rickettsiae are believed to be undergoing reductive evolution to a minimal genome. We propose that their relatively constant environmental niche has led to a minimal requirement for R. rickettsii to respond to environmental changes with a consequent deletion of non-essential transcriptional response regulators. A minimal number of predicted transcriptional regulators in the R. rickettsii genome is consistent with this hypothesis.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of an outer surface protein on Borrelia burgdorferi during tick feeding.

          Lyme disease spirochetes, Borrelia burgdorferi sensu lato, are maintained in zoonotic cycles involving ticks and small mammals. In unfed ticks, the spirochetes produce one outer surface protein, OspA, but not OspC. During infection in mammals, immunological data suggest that the spirochetes have changed their surface, now expressing OspC but little or no OspA. We find by in vitro growth experiments that this change is regulated in part by temperature; OspC is produced by spirochetes at 32-37 degrees C but not at 24 degrees C. Furthermore, spirochetes in the midgut of ticks that have fully engorged on mice now have OspC on their surface. Thus two environmental cues, an increase in temperature and tick feeding, trigger a major alteration of the spirochetal outer membrane. This rapid synthesis of OspC by spirochetes during tick feeding may play an essential role in the capacity of these bacteria to successfully infect mammalian hosts, including humans, when transmitted by ticks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent developments in bacterial cold-shock response.

            In response to temperature downshift, a number of changes occur in cellular physiology such as, (i) decrease in membrane fluidity, (ii) stabilization of secondary structures of nucleic acids leading to reduced efficiency of mRNA translation and transcription, (iii) inefficient folding of some proteins, and (iv) hampered ribosome function. Cold-shock response and adaptation has been quite extensively studied in Escherichia coli and Bacillus subtilis. A number of cold shock proteins are induced to counteract these harmful effects of temperature downshift. General principles of cold-shock response along with recent findings on desaturase system, RNA chaperone and transcription antitermination function of CspA homologues, cold shock induction of chaperones and synthesis of trehalose, CspA homologues from hyperthermophilic bacteria and possible multiple roles of cold shock proteins in other stress responses of bacteria are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of evolution in Rickettsia conorii and R. prowazekii.

              Rickettsia conorii is an obligate intracellular bacterium that causes Mediterranean spotted fever in humans. We determined the 1,268,755-nucleotide complete genome sequence of R. conorii, containing 1374 open reading frames. This genome exhibits 804 of the 834 genes of the previously determined R. prowazekii genome plus 552 supplementary open reading frames and a 10-fold increase in the number of repetitive elements. Despite these differences, the two genomes exhibit a nearly perfect colinearity that allowed the clear identification of different stages of gene alterations with gene remnants and 37 genes split in 105 fragments, of which 59 are transcribed. A 38-kilobase sequence inversion was dated shortly after the divergence of the genus.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                19 May 2009
                : 4
                : 5
                : e5612
                Affiliations
                [1 ]Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                [2 ]Genomics Unit, Research Technology Section, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                Baylor College of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: DWE TH. Performed the experiments: DWE TRC KV. Analyzed the data: DWE DES KV TH. Contributed reagents/materials/analysis tools: DWE TRC DES. Wrote the paper: DWE TH.

                Article
                09-PONE-RA-09235R1
                10.1371/journal.pone.0005612
                2680988
                19440298
                dedc54d7-5f25-4815-8cc9-3845fa7e44d4
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 16 March 2009
                : 24 April 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Genetics and Genomics/Gene Expression
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Medical Microbiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article