17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Diverse Function of PD-1/PD-L Pathway Beyond Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent success of PD-1 and PD-L1 blockade in cancer therapy illustrates the important role of the PD-1/PD-L1 pathway in the regulation of antitumor immune responses. However, signaling regulated by the PD-1/PD-L pathway is also associated with substantial inflammatory effects that can resemble those in autoimmune responses, chronic infection, and sepsis, consistent with the role of this pathway in balancing protective immunity and immunopathology, as well as in homeostasis and tolerance. Targeting PD-1/PD-L1 to treat cancer has shown benefits in many patients, suggesting a promising opportunity to target this pathway in autoimmune and inflammatory disorders. Here, we systematically evaluate the diverse biological functions of the PD-1/PD-L pathway in immune-mediated diseases and the relevant mechanisms that control these immune reactions.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          The diverse functions of the PD1 inhibitory pathway

          T cell activation is a highly regulated process involving peptide-MHC engagement of the T cell receptor and positive costimulatory signals. Upon activation, coinhibitory 'checkpoints', including programmed cell death protein 1 (PD1), become induced to regulate T cells. PD1 has an essential role in balancing protective immunity and immunopathology, homeostasis and tolerance. However, during responses to chronic pathogens and tumours, PD1 expression can limit protective immunity. Recently developed PD1 pathway inhibitors have revolutionized cancer treatment for some patients, but the majority of patients do not show complete responses, and adverse events have been noted. This Review discusses the diverse roles of the PD1 pathway in regulating immune responses and how this knowledge can improve cancer immunotherapy as well as restore and/or maintain tolerance during autoimmunity and transplantation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade.

            Blocking Programmed Death-1 (PD-1) can reinvigorate exhausted CD8 T cells (TEX) and improve control of chronic infections and cancer. However, whether blocking PD-1 can reprogram TEX into durable memory T cells (TMEM) is unclear. We found that reinvigoration of TEX in mice by PD-L1 blockade caused minimal memory development. After blockade, reinvigorated TEX became reexhausted if antigen concentration remained high and failed to become TMEM upon antigen clearance. TEX acquired an epigenetic profile distinct from that of effector T cells (TEFF) and TMEM cells that was minimally remodeled after PD-L1 blockade. This finding suggests that TEX are a distinct lineage of CD8 T cells. Nevertheless, PD-1 pathway blockade resulted in transcriptional rewiring and reengagement of effector circuitry in the TEX epigenetic landscape. These data indicate that epigenetic fate inflexibility may limit current immunotherapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PD-1 + regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer

              Significance PD-1 blockade is a cancer immunotherapy effective in various types of cancer. However, we observed rapid cancer progression, called hyperprogressive disease (HPD), in ∼10% of advanced gastric cancer patients treated with anti–PD-1 monoclonal antibody. Tumors of HPD patients possessed highly proliferating FoxP3+ Treg cells after treatment, contrasting with their reduction in non-HPD tumors. In vitro PD-1 blockade augmented proliferation and suppressive activity of human Treg cells. Likewise, murine Treg cells that were deficient in PD-1 signaling were more proliferative and immunosuppressive. Thus, HPD may occur when PD-1 blockade activates and expands tumor-infiltrating PD-1+ Treg cells to overwhelm tumor-reactive PD-1+ effector T cells. Depletion of the former may therefore help treat and prevent HPD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                04 October 2019
                2019
                : 10
                : 2298
                Affiliations
                State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
                Author notes

                Edited by: Philippe Saas, INSERM U1098 Interactions Hôte-Greffon-Tumeur & Ingénierie Cellulaire et Génique, France

                Reviewed by: Daniel Olive, Aix Marseille Université, France; Thierry Mp Gauthier, National Institutes of Health (NIH), United States

                *Correspondence: Zhigang Zhang zzhang@ 123456shsci.org

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                †These authors share co-first authorship

                Article
                10.3389/fimmu.2019.02298
                6787287
                31636634
                deddeae7-633f-4f7d-9eb7-9ed08763e557
                Copyright © 2019 Qin, Hu, Zhang, Jiang, Li, Zhang and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 May 2019
                : 11 September 2019
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 185, Pages: 16, Words: 14122
                Categories
                Immunology
                Review

                Immunology
                pd-1,pd-l1,autoimmune,chronic infection,sepsis
                Immunology
                pd-1, pd-l1, autoimmune, chronic infection, sepsis

                Comments

                Comment on this article