• Record: found
  • Abstract: found
  • Article: found
Is Open Access

Adaptation of High-Throughput Screening in Drug Discovery—Toxicological Screening Tests

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      High-throughput screening (HTS) is one of the newest techniques used in drug design and may be applied in biological and chemical sciences. This method, due to utilization of robots, detectors and software that regulate the whole process, enables a series of analyses of chemical compounds to be conducted in a short time and the affinity of biological structures which is often related to toxicity to be defined. Since 2008 we have implemented the automation of this technique and as a consequence, the possibility to examine 100,000 compounds per day. The HTS method is more frequently utilized in conjunction with analytical techniques such as NMR or coupled methods e.g., LC-MS/MS. Series of studies enable the establishment of the rate of affinity for targets or the level of toxicity. Moreover, researches are conducted concerning conjugation of nanoparticles with drugs and the determination of the toxicity of such structures. For these purposes there are frequently used cell lines. Due to the miniaturization of all systems, it is possible to examine the compound’s toxicity having only 1–3 mg of this compound. Determination of cytotoxicity in this way leads to a significant decrease in the expenditure and to a reduction in the length of the study.

      Related collections

      Most cited references 140

      • Record: found
      • Abstract: found
      • Article: not found

      Microscale culture of human liver cells for drug development.

      Tissue function depends on hierarchical structures extending from single cells ( approximately 10 microm) to functional subunits (100 microm-1 mm) that coordinate organ functions. Conventional cell culture disperses tissues into single cells while neglecting higher-order processes. The application of semiconductor-driven microtechnology in the biomedical arena now allows fabrication of microscale tissue subunits that may be functionally improved and have the advantages of miniaturization. Here we present a miniaturized, multiwell culture system for human liver cells with optimized microscale architecture that maintains phenotypic functions for several weeks. The need for such models is underscored by the high rate of pre-launch and post-market attrition of pharmaceuticals due to liver toxicity. We demonstrate utility through assessment of gene expression profiles, phase I/II metabolism, canalicular transport, secretion of liver-specific products and susceptibility to hepatotoxins. The combination of microtechnology and tissue engineering may enable development of integrated tissue models in the so-called 'human on a chip'.
        • Record: found
        • Abstract: found
        • Article: not found

        The ToxCast program for prioritizing toxicity testing of environmental chemicals.

        The U.S. Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS), and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources toward chemicals that likely represent the greatest hazard to human health and the environment. This chemical prioritization research program, entitled "ToxCast," is being initiated with the purpose of developing the ability to forecast toxicity based on bioactivity profiling. The proof-of-concept phase of ToxCast will focus upon chemicals with an existing, rich toxicological database in order to provide an interpretive context for the ToxCast data. This set of several hundred reference chemicals will represent numerous structural classes and phenotypic outcomes, including tumorigens, developmental and reproductive toxicants, neurotoxicants, and immunotoxicants. The ToxCast program will evaluate chemical properties and bioactivity profiles across a broad spectrum of data domains: physical-chemical, predicted biological activities based on existing structure-activity models, biochemical properties based on HTS assays, cell-based phenotypic assays, and genomic and metabolomic analyses of cells. These data will be generated through a series of external contracts, along with collaborations across EPA, with the National Toxicology Program, and with the National Institutes of Health Chemical Genomics Center. The resulting multidimensional data set provides an informatics challenge requiring appropriate computational methods for integrating various chemical, biological, and toxicological data into profiles and models predicting toxicity.
          • Record: found
          • Abstract: found
          • Article: not found

          Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast.

          Discovering target and off-target effects of specific compounds is critical to drug discovery and development. We generated a compendium of "chemical-genetic interaction" profiles by testing the collection of viable yeast haploid deletion mutants for hypersensitivity to 82 compounds and natural product extracts. To cluster compounds with a similar mode-of-action and to reveal insights into the cellular pathways and proteins affected, we applied both a hierarchical clustering and a factorgram method, which allows a gene or compound to be associated with more than one group. In particular, tamoxifen, a breast cancer therapeutic, was found to disrupt calcium homeostasis and phosphatidylserine (PS) was recognized as a target for papuamide B, a cytotoxic lipopeptide with anti-HIV activity. Further, the profile of crude extracts resembled that of its constituent purified natural product, enabling detailed classification of extract activity prior to purification. This compendium should serve as a valuable key for interpreting cellular effects of novel compounds with similar activities.

            Author and article information

            Department of Pharmaceutical Chemistry and Drug Analysis, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: pawel.szymanski@ (P.S.); elzbieta.mikiciuk-olasik@ (E.M.-O.)
            Author notes
            [* ]Author to whom correspondence should be addressed; E-Mail: magdalena.markowicz@ ; Tel./Fax: +48-42-677-92-50.
            Int J Mol Sci
            International Journal of Molecular Sciences
            Molecular Diversity Preservation International (MDPI)
            29 December 2011
            : 13
            : 1
            : 427-452
            © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

            This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (



            Comment on this article