4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human impacts, climate change, and aquatic ecosystem response during the past 2000 yr at Lake Wandakara, Uganda

      , , , ,
      Quaternary Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analyses of carbon and hydrogen isotope ratios of terrestrial leaf waxes and the carbon and nitrogen abundance, ratio, and isotopic composition of bulk sediments from Lake Wandakara, a crater lake in western Uganda, East Africa, document human and climatic controls on the aquatic system and on the surrounding terrestrial vegetation during the past two millennia. Our data indicate that Wandakara was a relatively stable, productive lake surrounded by C 3 vegetation from AD 70 to 1000. Abrupt changes in the δ 13C of terrestrial leaf waxes indicate a series of abrupt shifts in the relative abundance of C 3 and C 4 vegetation caused by a combination of climate change and human activities around Wandakara beginning at AD 1000. Abrupt shifts in bulk sediment organic geochemistry, particularly C/N ratios and δ 15N, indicate that human activities at this time caused permanent changes in the limnology of Lake Wandakara, including eutrophication. Our results suggest that the biogeochemistry of Lake Wandakara was more sensitive to shifting human impacts than to climate variations during the past millennium, highlighting the importance of understanding the intensity of pre-colonial human impacts on Africa's aquatic ecosystems.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP

          The focus of this paper is the conversion of radiocarbon ages to calibrated (cal) ages for the interval 24,000–0 cal BP (Before Present, 0 cal BP = AD 1950), based upon a sample set of dendrochronologically dated tree rings, uranium-thorium dated corals, and varve-counted marine sediment. The14C age–cal age information, produced by many laboratories, is converted to Δ14C profiles and calibration curves, for the atmosphere as well as the oceans. We discuss offsets in measuredl4C ages and the errors therein, regional14C age differences, tree–coral14C age comparisons and the time dependence of marine reservoir ages, and evaluate decadalvs. single-year14C results. Changes in oceanic deepwater circulation, especially for the 16,000–11,000 cal BP interval, are reflected in the Δ14C values of INTCAL98.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Stable isotopes in precipitation

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes

                Bookmark

                Author and article information

                Journal
                applab
                Quaternary Research
                Quat. res.
                Elsevier BV
                0033-5894
                1096-0287
                November 2009
                January 2017
                : 72
                : 03
                : 315-324
                Article
                10.1016/j.yqres.2009.06.008
                deef96b2-1cd0-4a37-a6df-878b419818f8
                © 2009

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article