35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway.

      The Journal of Biological Chemistry
      Active Transport, Cell Nucleus, Animals, Atrophy, Cell Differentiation, Cell Line, Cell Nucleus, metabolism, Dexamethasone, pharmacology, Dose-Response Relationship, Drug, Down-Regulation, Gene Expression Regulation, Gene Expression Regulation, Enzymologic, Glucocorticoids, Immunoblotting, Insulin-Like Growth Factor I, genetics, physiology, Mice, Muscle Proteins, Oligonucleotide Array Sequence Analysis, Phenotype, Phosphatidylinositol 3-Kinases, Protein Kinases, Protein-Serine-Threonine Kinases, Reverse Transcriptase Polymerase Chain Reaction, SKP Cullin F-Box Protein Ligases, Signal Transduction, TOR Serine-Threonine Kinases, Time Factors, Transcription, Genetic, Ubiquitin-Protein Ligases

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeletal muscle size is regulated by anabolic (hypertrophic) and catabolic (atrophic) processes. We first characterized molecular markers of both hypertrophy and atrophy and identified a small subset of genes that are inversely regulated in these two settings (e.g. up-regulated by an inducer of hypertrophy, insulin-like growth factor-1 (IGF-1), and down-regulated by a mediator of atrophy, dexamethasone). The genes identified as being inversely regulated by atrophy, as opposed to hypertrophy, include the E3 ubiquitin ligase MAFbx (also known as atrogin-1). We next sought to investigate the mechanism by which IGF-1 inversely regulates these markers, and found that the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, which we had previously characterized as being critical for hypertrophy, is also required to be active in order for IGF-1-mediated transcriptional changes to occur. We had recently demonstrated that the IGF1/PI3K/Akt pathway can block dexamethasone-induced up-regulation of the atrophy-induced ubiquitin ligases MuRF1 and MAFbx by blocking nuclear translocation of a FOXO transcription factor. In the current study we demonstrate that an additional step of IGF1 transcriptional regulation occurs downstream of mTOR, which is independent of FOXO. Thus both the Akt/FOXO and the Akt/mTOR pathways are required for the transcriptional changes induced by IGF-1.

          Related collections

          Author and article information

          Comments

          Comment on this article