14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Unique Bisphenol A Transcriptome in Prostate Cancer: Novel Effects on ERβ Expression That Correspond to Androgen Receptor Mutation Status

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Prostatic adenocarcinomas are dependent on androgen receptor (AR) activity for growth and progression, and therapy for disseminated disease depends on ablation of AR activity. Recurrent tumors ultimately arise wherein AR has been re-activated. One mechanism of AR restoration is via somatic mutation, wherein cells containing mutant receptors become susceptible to activation by alternative ligands, including bisphenol A (BPA). In tumors with specific AR mutations, BPA promotes therapeutic bypass, suggesting significant negative impact to the clinical management of prostate cancer.

          Objective

          Our goal was to determine the mechanism of BPA action in cancer cells carrying BPA-responsive AR mutants.

          Methods

          The molecular signature of BPA activity in prostate cancer cells harboring mutant AR was delineated via genetic microarray analysis. Specificity of BPA action was assessed by comparison with the molecular signature elicited by dihydrotestosterone (DHT).

          Results

          BPA and DHT elicited distinct transcriptional signatures in prostate cancer cells expressing the BPA-responsive mutant AR-T877A. BPA dramatically attenuated estrogen receptor beta (ERβ) expression; this finding was specific to prostate tumor cells in which BPA induces cellular proliferation.

          Conclusions

          BPA induces a distinct gene expression signature in prostate cancer cells expressing somatic AR mutation, and a major molecular consequence of BPA action is down-regulation of ERβ. Since ERβ functions to antagonize AR function and AR-dependent proliferation, these findings reveal a novel mechanism by which BPA likely regulates cellular proliferation. Future investigation directed at dissecting the importance of ERβ in the proliferative response to BPA will establish the contribution of this event to adverse effects associated with human exposure.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.

          The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 > zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 > genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta.

            The rat estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand binding domain and in the N-terminal transactivation domain. In this study we investigated the messenger RNA expression of both ER subtypes in rat tissues by RT-PCR and compared the ligand binding specificity of the ER subtypes. Saturation ligand binding analysis of in vitro synthesized human ER alpha and rat ER beta protein revealed a single binding component for 16 alpha-iodo-17 beta-estradiol with high affinity [dissociation constant (Kd) = 0.1 nM for ER alpha protein and 0.4 nM for ER beta protein]. Most estrogenic substances or estrogenic antagonists compete with 16 alpha-[125I]iodo-17 beta-estradiol for binding to both ER subtypes in a very similar preference and degree; that is, diethylstilbestrol > hexestrol > dienestrol > 4-OH-tamoxifen > 17 beta-estradiol > coumestrol, ICI-164384 > estrone, 17 alpha-estradiol > nafoxidine, moxestrol > clomifene > estriol, 4-OH-estradiol > tamoxifen, 2-OH-estradiol, 5-androstene-3 beta, 17 beta-diol, genistein for the ER alpha protein and dienestrol > 4-OH-tamoxifen > diethylstilbestrol > hexestrol > coumestrol, ICI-164384 > 17 beta-estradiol > estrone, genistein > estriol > nafoxidine, 5-androstene-3 beta, 17 beta-diol > 17 alpha-estradiol, clomifene, 2-OH-estradiol > 4-OH-estradiol, tamoxifen, moxestrol for the ER beta protein. The rat tissue distribution and/or the relative level of ER alpha and ER beta expression seems to be quite different, i.e. moderate to high expression in uterus, testis, pituitary, ovary, kidney, epididymis, and adrenal for ER alpha and prostate, ovary, lung, bladder, brain, uterus, and testis for ER beta. The described differences between the ER subtypes in relative ligand binding affinity and tissue distribution could contribute to the selective action of ER agonists and antagonists in different tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identifying biological themes within lists of genes with EASE.

              EASE is a customizable software application for rapid biological interpretation of gene lists that result from the analysis of microarray, proteomics, SAGE and other high-throughput genomic data. The biological themes returned by EASE recapitulate manually determined themes in previously published gene lists and are robust to varying methods of normalization, intensity calculation and statistical selection of genes. EASE is a powerful tool for rapidly converting the results of functional genomics studies from 'genes' to 'themes'.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                November 2007
                23 August 2007
                : 115
                : 11
                : 1646-1653
                Affiliations
                [1 ] Department of Cell and Cancer Biology
                [2 ] Department of Environmental Health
                [3 ] Center for Environmental Genetics and
                [4 ] UC Barrett Cancer Center
                [5 ] University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
                Author notes
                Address correspondence to K.E. Knudsen, University of Cincinnati College of Medicine, Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, 3125 Eden Ave., ML0521, Cincinnati, OH 45267–0521 USA. Telephone: (513) 558–7371. Fax: (513) 558–4454. E-mail: Karen.Knudsen@ 123456UC.edu

                The authors declare they have no competing financial interests.

                Article
                ehp0115-001646
                10.1289/ehp.10283
                2072856
                18007998
                df1a3756-615e-49c5-87a2-b8444930ba0d
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.
                History
                : 20 March 2007
                : 23 August 2007
                Categories
                Research

                Public health
                endocrine disruptor,xeno-estrogen,microarray,androgen receptor,prostatic adenocarcinoma

                Comments

                Comment on this article