19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bone Health Should Be an Important Concern in the Care of Patients Affected by 21 Hydroxylase Deficiency

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoporosis has been an understandable concern for children and adult patients with congenital adrenal hyperplasia (CAH) who may receive or have received supraphysiological doses of glucocorticoids. Some previous reports on bone mineral density (BMD) in adult CAH patients showed no significant differences in BMD between patients with CAH and controls, but others have found lower BMD in CAH patients. In reports documenting the BMD reduction, this outcome has been attributed to an accumulated effect of prolonged exposure to excess glucocorticoids during infancy and childhood. We recently conducted a trial to establish the role of the total cumulative glucocorticoid dose on BMD. We established for the first time that there was a negative relationship between total cumulative glucocorticoid dose and lumbar and femoral BMD. Women might benefit from the preserving effect of estrogens compared to men. BMI (Body Mass Index) also appeared to protect patients from bone loss. In light of this, physicians should bear in mind the potential consequences of glucocorticoids on bone and therefore adjust the treatment and improve clinical and biological surveillance from infancy. Furthermore, preventive measures against corticosteroid-induced osteoporosis should be discussed right from the beginning of glucocorticoid therapy.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Congenital adrenal hyperplasia due to 21-hydroxylase deficiency.

          More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21-hydroxylase deficiency. Females with severe, classic 21-hydroxylase deficiency are exposed to excess androgens prenatally and are born with virilized external genitalia. Most patients cannot synthesize sufficient aldosterone to maintain sodium balance and may develop potentially fatal "salt wasting" crises if not treated. The disease is caused by mutations in the CYP21 gene encoding the steroid 21-hydroxylase enzyme. More than 90% of these mutations result from intergenic recombinations between CYP21 and the closely linked CYP21P pseudogene. Approximately 20% are gene deletions due to unequal crossing over during meiosis, whereas the remainder are gene conversions--transfers to CYP21 of deleterious mutations normally present in CYP21P. The degree to which each mutation compromises enzymatic activity is strongly correlated with the clinical severity of the disease in patients carrying it. Prenatal diagnosis by direct mutation detection permits prenatal treatment of affected females to minimize genital virilization. Neonatal screening by hormonal methods identifies affected children before salt wasting crises develop, reducing mortality from this condition. Glucocorticoid and mineralocorticoid replacement are the mainstays of treatment, but more rational dosing and additional therapies are being developed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Congenital adrenal hyperplasia.

            Congenital adrenal hyperplasia (CAH) due to deficiency of 21-hydroxylase is a disorder of the adrenal cortex characterised by cortisol deficiency, with or without aldosterone deficiency, and androgen excess. Patients with the most severe form also have abnormalities of the adrenal medulla and epinephrine deficiency. The severe classic form occurs in one in 15,000 births worldwide, and the mild non-classic form is a common cause of hyperandrogenism. Neonatal screening for CAH and gene-specific prenatal diagnosis are now possible. Standard hormone replacement fails to achieve normal growth and development for many children with CAH, and adults can experience iatrogenic Cushing's syndrome, hyperandrogenism, infertility, or the development of the metabolic syndrome. This Seminar reviews the epidemiology, genetics, pathophysiology, diagnosis, and management of CAH, and provides an overview of clinical challenges and future therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens.

              The aromatase enzyme complex catalyzes the conversion of androgens to estrogens in a wide variety of tissues, including the ovary, testis, placenta, brain, and adipose tissue. Only a single human gene encoding aromatase P450 (CYP19) has been isolated; tissue-specific regulation is controlled in part by alternative promoters in a tissue-specific manner. We report a novel mutation in the CYP19 gene in a sister and brother. The 28-yr-old XX proband, followed since infancy, exhibited the cardinal features of the aromatase deficiency syndrome as recently defined. She had nonadrenal female pseudohermaphrodism at birth and underwent repair of the external genitalia, including a clitorectomy. At the age of puberty, she developed progressive signs of virilization, pubertal failure with no signs of estrogen action, hypergonadotropic hypogonadism, polycystic ovaries on pelvic sonography, and tall stature. The basal concentrations of plasma testosterone, androstenedione, and 17-hydroxyprogesterone were elevated, whereas plasma estradiol was low. Cyst fluid from the polycystic ovaries had a strikingly abnormal ratio of androstenedione and testosterone to estradiol and estrone. Hormone replacement therapy led to breast development, menses, resolution of ovarian cysts, and suppression of the elevated FSH and LH values. Her adult height is 177.6 cm (+2.5 SD). Her only sibling, an XY male, was studied at 24 yr of age. During both pregnancies, the mother exhibited signs of progressive virilization that regressed postpartum. The height of the brother was 204 cm (+3.7 SD) with eunuchoid skeletal proportions, and the weight was 135.1 kg (+2.1 SD). He was sexually fully mature and had macroorchidism. The plasma concentrations of testosterone (2015 ng/dL), 5 alpha-dihydrotestosterone (125 ng/dL), and androstenedione (335 ng/dL) were elevated; estradiol and estrone levels were less than 7 pg/mL. Plasma FSH and LH concentrations were more than 3 times the mean value. Plasma PRL was low; serum insulin-like growth factor I and GH-binding protein were normal. The bone age was 14 yr at a chronological age of 24 3/12 yr. Striking osteopenia was noted at the wrist. Bone mineral densitometric indexes of the lumbar spine (cancellous bone) and distal radius (cortical bone) were consistent with osteoporosis; the distal radius was -4.7 SD below the mean value for age- and sex-matched normal men; indexes of bone turnover were increased. Hyperinsulinemia, increased serum total and low density lipoprotein cholesterol, and triglycerides and decreased high density lipoprotein cholesterol were detected.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Journal
                Int J Pediatr Endocrinol
                IJPE
                International Journal of Pediatric Endocrinology
                Hindawi Publishing Corporation
                1687-9848
                1687-9856
                2010
                28 September 2010
                : 2010
                : 326275
                Affiliations
                1AP-HP, Department of Endocrinology and Reproductive Medicine, Groupe Hospitalier Pitié-Salpétrière, 47-83 boulevard de l'Hôpital, 75013 Paris Cedex 13, France
                2Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Groupe Hospitalier Pitié-Salpétrière, 47-83 boulevard de l'Hôpital, 75013 Paris Cedex 13, France
                3AP-HP, Department of Pediatric Endocrinology and Gynecology, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
                Author notes

                Academic Editor: John Fuqua

                Article
                10.1155/2010/326275
                2948879
                20936142
                df1b5493-035b-40ed-8da1-0e5d33e293b5
                Copyright © 2010 Anne Bachelot et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 April 2010
                : 8 July 2010
                Categories
                Review Article

                Pediatrics
                Pediatrics

                Comments

                Comment on this article