96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vitro biological assessment of berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Berberis vulgaris is a well known plant with traditional herbal medical history. The aims of this study was to bioscreen and compare the in vitro biological activity (antioxidant, cholinergic, antidaibetic and the anticancer) of barberry crude extract and berberine active compound.

          Methods

          The effect of B. vulgaris extract and berberine chloride on cellular thiobarbituric acid reactive species (TBARS) formation, diphenyle–α-picrylhydrazyl (DPPH) oxidation, cellular nitric oxide (NO) radical scavenging capability, superoxide dismutase (SOD), glutathione peroxidase (GPx), acetylcholinesterase (AChE) and α-gulcosidase activities were spectrophotometrically determined. On the other hand, the effect of extract and berberine as anticancer was estimated on three different cell lines which were MCF-7, HepG-2, and Caco-2 cells by using neutral red uptake assay which compared with control normal cells (PBMC).

          Results

          Our results showed that barberry crude extract contains 0.6 mg berberine/mg crude extract. Barberry extract showed potent antioxidative capacity through decreasing TBARS, NO and the oxidation of DPPH that associated with GPx and SOD hyperactivation. Inhibitory effect of berberis crude extract on α-glucosidase was more potent than that of berberine chloride, while both had the same AChE inhibitory effect. Besides, different concentrations of both berberine chloride and barberry ethanolic extract showed to have no growth inhibitory effect on normal blood cells (PBMC). Otherwise, both berberine chloride and barberry ethanolic extract showed to have inhibitory effect on the growth of breast, liver and colon cancer cell lines (MCF7, HepG2 and CACO-2, respectively) at different incubation times starting from 24 hrs up to 72 hrs and the inhibitory effect increased with time in a dose dependant manner.

          Conclusion

          This work demonstrates the potential of the barberry crude extract and its active alkaloid, berberine, on suppressing lipid peroxidation, suggesting a promising use in the treatment of hepatic oxidative stress, Alzheimer and idiopathic male factor infertility. Beside , berberis vulgaris ethanolic extract is safe non-toxic extract as it was not inhibit the growth of PBMC that can induce cancer cell death that could return to its powerful antioxidant activity.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells

            Background- Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. Results- We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. Conclusion- These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and blocking viral oncoproteins E6 and E7 expression. Inhibition of AP-1 activity by berberine may be one of the mechanisms responsible for the anti-HPV effect of berberine. We propose that berberine is a potentially promising compound for the treatment of cervical cancer infected with HPV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells.

              The enzyme cyclooxygenase-2 (COX-2) is abundantly expressed in colon cancer cells and plays a key role in colon tumorigenesis. Compounds inhibiting COX-2 transcriptional activity have therefore potentially a chemopreventive property against colon tumor formation. An assay method for estimating COX-2 transcriptional activity in human colon cancer cells was established using a beta-galactosidase reporter gene system, and examination was made of various medicinal herbs and their ingredients for an inhibitory effect on COX-2 transcriptional activity. We found that berberine, an isoquinoline alkaloid present in plants of the genera Berberis and Coptis, effectively inhibits COX-2 transcriptional activity in colon cancer cells in a dose- and time-dependent manner at concentrations higher than 0.3 microM. The present findings may further explain the mechanism of anti-inflammatory and anti-tumor promoting effects of berberine.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2013
                5 September 2013
                : 13
                : 218
                Affiliations
                [1 ]Biochemistry Department, Faculty of Science, Alexandria University, P.O. Box: 21511, Alexandria, Egypt
                [2 ]Medical Biotechnology Department, Genetic Engineering & Biotechnology Research Institute, City for Scientific Research & Technology Applications, Alexandria, Egypt
                [3 ]Protein research Department, Genetic Engineering & Biotechnology Research Institute, City for Scientific Research & Technology Applications, Alexandria, Egypt
                Article
                1472-6882-13-218
                10.1186/1472-6882-13-218
                4016550
                24007270
                df1bcd1c-b3ee-4c5f-80fc-dd3f9410806b
                Copyright © 2013 Abd El-Wahab et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 March 2012
                : 30 August 2013
                Categories
                Research Article

                Complementary & Alternative medicine
                bioscreening,dpph,acetylcholinesterase,α-glucosidase,breast cancer,hepatoma,caco-2,pbmc

                Comments

                Comment on this article