9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TumorGAN: A Multi-Modal Data Augmentation Framework for Brain Tumor Segmentation

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The high human labor demand involved in collecting paired medical imaging data severely impedes the application of deep learning methods to medical image processing tasks such as tumor segmentation. The situation is further worsened when collecting multi-modal image pairs. However, this issue can be resolved through the help of generative adversarial networks, which can be used to generate realistic images. In this work, we propose a novel framework, named TumorGAN, to generate image segmentation pairs based on unpaired adversarial training. To improve the quality of the generated images, we introduce a regional perceptual loss to enhance the performance of the discriminator. We also develop a regional L 1 loss to constrain the color of the imaged brain tissue. Finally, we verify the performance of TumorGAN on a public brain tumor data set, BraTS 2017. The experimental results demonstrate that the synthetic data pairs generated by our proposed method can practically improve tumor segmentation performance when applied to segmentation network training.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

          In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

            In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain tumor segmentation with Deep Neural Networks

              In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                28 July 2020
                August 2020
                : 20
                : 15
                : 4203
                Affiliations
                [1 ]College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; lliqingyun11@ 123456gmail.com (Q.L.); yuzhibin@ 123456ouc.edu.cn (Z.Y.); zhenghaiyong@ 123456ouc.edu.cn (H.Z.)
                [2 ]School of Life Science and Technology, Xidian University, Xi’an 710071, China
                Author notes
                [* ]Correspondence: ybwang@ 123456xidian.edu.cn
                Author information
                https://orcid.org/0000-0003-4372-1767
                Article
                sensors-20-04203
                10.3390/s20154203
                7435374
                32731598
                df242b7e-ff01-418e-8184-a06de6d02c5d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 May 2020
                : 24 July 2020
                Categories
                Letter

                Biomedical engineering
                medical image augmentation,generative adversarial network,brain tumor segmentation,image-to-image

                Comments

                Comment on this article