4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expansion and preservation of the functional activity of adult hematopoietic stem cells cultured ex vivo with a histone deacetylase inhibitor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Attempts to expand ex vivo the numbers of human hematopoietic stem cells (HSCs) without compromising their marrow repopulating capacity and their ability to establish multilineage hematopoiesis has been the subject of intense investigation. Although most such efforts have focused on cord blood HSCs, few have been applied to adult HSCs, a more clinically relevant HSC source for gene modification. To date, the strategies that have been used to expand adult HSCs have resulted in modest effects or HSCs with lineage bias and a limited ability to generate T cells in vivo. We previously reported that culturing umbilical cord blood CD34+ cells in serum‐free media supplemented with valproic acid (VPA), a histone deacetylase inhibitor, and a combination of cytokines led to the expansion of the numbers of fully functional HSCs. In the present study, we used this same approach to expand the numbers of adult human CD34+ cells isolated from mobilized peripheral blood and bone marrow. This approach resulted in a significant increase in the numbers of phenotypically defined HSCs (CD34+CD45RA‐CD90+D49f+). Cells incubated with VPA also exhibited increased aldehyde dehydrogenase activity and decreased mitochondrial membrane potential, each functional markers of HSCs. Grafts harvested from VPA‐treated cultures were able to engraft in immune‐deficient mice and, importantly, to generate cellular progeny belonging to each hematopoietic lineage in similar proportion to that observed with unmanipulated CD34+ cells. These data support the utility of VPA‐mediated ex vivo HSC expansion for gene modification of adult HSCs.

          Abstract

          Valproic acid (VPA)‐mediated ex vivo expansion of adult bone marrow and mobilized peripheral blood CD34+ cells resulted in a cellular product characterized by high viability, enrichment with CD34+CD45RA‐CD90+ cells, increased aldehyde dehydrogenase (ALDH) activity, robust multipotent clonogenic potential, and decreased mitochondrial potential. VPA‐expanded grafts were able to establish unbiased multilineage human hematopoietic‐cell chimerism in NSG mice at 16 weeks post‐transplantation.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.

          Although practiced clinically for more than 40 years, the use of hematopoietic stem cell (HSC) transplants remains limited by the ability to expand these cells ex vivo. An unbiased screen with primary human HSCs identified a purine derivative, StemRegenin 1 (SR1), that promotes the ex vivo expansion of CD34+ cells. Culture of HSCs with SR1 led to a 50-fold increase in cells expressing CD34 and a 17-fold increase in cells that retain the ability to engraft immunodeficient mice. Mechanistic studies show that SR1 acts by antagonizing the aryl hydrocarbon receptor (AHR). The identification of SR1 and AHR modulation as a means to induce ex vivo HSC expansion should facilitate the clinical use of HSC therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche.

            Bone marrow transplantation is the primary therapy for numerous hematopoietic disorders. The efficiency of bone marrow transplantation depends on the function of long-term hematopoietic stem cells (LT-HSCs), which is markedly influenced by their hypoxic niche. Survival in this low-oxygen microenvironment requires significant metabolic adaptation. Here, we show that LT-HSCs utilize glycolysis instead of mitochondrial oxidative phosphorylation to meet their energy demands. We used flow cytometry to identify a unique low mitochondrial activity/glycolysis-dependent subpopulation that houses the majority of hematopoietic progenitors and LT-HSCs. Finally, we demonstrate that Meis1 and Hif-1alpha are markedly enriched in LT-HSCs and that Meis1 regulates HSC metabolism through transcriptional activation of Hif-1alpha. These findings reveal an important transcriptional network that regulates HSC metabolism. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Specification of haematopoietic stem cell fate via modulation of mitochondrial activity

              Haematopoietic stem cells (HSCs) differ from their committed progeny by relying primarily on anaerobic glycolysis rather than mitochondrial oxidative phosphorylation for energy production. However, whether this change in the metabolic program is the cause or the consequence of the unique function of HSCs remains unknown. Here we show that enforced modulation of energy metabolism impacts HSC self-renewal. Lowering the mitochondrial activity of HSCs by chemically uncoupling the electron transport chain drives self-renewal under culture conditions that normally induce rapid differentiation. We demonstrate that this metabolic specification of HSC fate occurs through the reversible decrease of mitochondrial mass by autophagy. Our data thus reveal a causal relationship between mitochondrial metabolism and fate choice of HSCs and also provide a valuable tool to expand HSCs outside of their native bone marrow niches.
                Bookmark

                Author and article information

                Contributors
                eran.zimran@gmail.com
                Journal
                Stem Cells Transl Med
                Stem Cells Transl Med
                10.1002/(ISSN)2157-6580
                SCT3
                Stem Cells Translational Medicine
                John Wiley & Sons, Inc. (Hoboken, USA )
                2157-6564
                2157-6580
                17 January 2020
                April 2020
                : 9
                : 4 ( doiID: 10.1002/sct3.v9.4 )
                : 531-542
                Affiliations
                [ 1 ] Division of Hematology and Oncology Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York NY
                [ 2 ] Hematology Department Hadassah University Center Jerusalem Israel
                Author notes
                [*] [* ] Correspondence

                Eran Zimran, MD, Hematology Department, Hadassah University Center, Kiryat Hadassah 1, POB 1200, Jerusalem 911200, Israel.

                Email: eran.zimran@ 123456gmail.com

                Author information
                https://orcid.org/0000-0002-5483-5180
                Article
                SCT312661
                10.1002/sctm.19-0199
                7103619
                31950644
                df25738f-0567-410f-9287-5f5446a95439
                © 2020 The Authors. stem cells translational medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 02 July 2019
                : 27 December 2019
                Page count
                Figures: 5, Tables: 2, Pages: 12, Words: 7620
                Categories
                Tissue‐specific Progenitor and Stem Cells
                Tissue‐specific Progenitor and Stem Cells
                Custom metadata
                2.0
                April 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.8 mode:remove_FC converted:30.03.2020

                adult bone marrow,ex vivo expansion,hematopoietic stem cells,histone deacetylase inhibitor,mobilized peripheral blood,valproic acid

                Comments

                Comment on this article