12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute mechanical circulatory support for cardiogenic shock: the “door to support” time

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiogenic shock (CS) remains a major cause of in-hospital mortality in the setting of acute myocardial infarction. CS begins as a hemodynamic problem with impaired cardiac output leading to reduced systemic perfusion, increased residual volume within the left and right ventricles, and increased cardiac filling pressures. A critical step towards the development of future algorithms is a clear understanding of the treatment objectives for CS. In this review, we introduce the “door to support” time as an emerging target of therapy to improve outcomes associated with CS, define four key treatment objectives in the management of CS, discuss the importance of early hemodynamic assessment and appropriate selection of acute mechanical circulatory support (AMCS) devices for CS, and introduce a classification scheme that identifies subtypes of CS based on cardiac filling pressures.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Importance of venous congestion for worsening of renal function in advanced decompensated heart failure.

          To determine whether venous congestion, rather than impairment of cardiac output, is primarily associated with the development of worsening renal function (WRF) in patients with advanced decompensated heart failure (ADHF). Reduced cardiac output is traditionally believed to be the main determinant of WRF in patients with ADHF. A total of 145 consecutive patients admitted with ADHF treated with intensive medical therapy guided by pulmonary artery catheter were studied. We defined WRF as an increase of serum creatinine >/=0.3 mg/dl during hospitalization. In the study cohort (age 57 +/- 14 years, cardiac index 1.9 +/- 0.6 l/min/m(2), left ventricular ejection fraction 20 +/- 8%, serum creatinine 1.7 +/- 0.9 mg/dl), 58 patients (40%) developed WRF. Patients who developed WRF had a greater central venous pressure (CVP) on admission (18 +/- 7 mm Hg vs. 12 +/- 6 mm Hg, p < 0.001) and after intensive medical therapy (11 +/- 8 mm Hg vs. 8 +/- 5 mm Hg, p = 0.04). The development of WRF occurred less frequently in patients who achieved a CVP <8 mm Hg (p = 0.01). Furthermore, the ability of CVP to stratify risk for development of WRF was apparent across the spectrum of systemic blood pressure, pulmonary capillary wedge pressure, cardiac index, and estimated glomerular filtration rates. Venous congestion is the most important hemodynamic factor driving WRF in decompensated patients with advanced heart failure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of nesiritide in patients with acute decompensated heart failure.

            Nesiritide is approved in the United States for early relief of dyspnea in patients with acute heart failure. Previous meta-analyses have raised questions regarding renal toxicity and the mortality associated with this agent. We randomly assigned 7141 patients who were hospitalized with acute heart failure to receive either nesiritide or placebo for 24 to 168 hours in addition to standard care. Coprimary end points were the change in dyspnea at 6 and 24 hours, as measured on a 7-point Likert scale, and the composite end point of rehospitalization for heart failure or death within 30 days. Patients randomly assigned to nesiritide, as compared with those assigned to placebo, more frequently reported markedly or moderately improved dyspnea at 6 hours (44.5% vs. 42.1%, P=0.03) and 24 hours (68.2% vs. 66.1%, P=0.007), but the prespecified level for significance (P≤0.005 for both assessments or P≤0.0025 for either) was not met. The rate of rehospitalization for heart failure or death from any cause within 30 days was 9.4% in the nesiritide group versus 10.1% in the placebo group (absolute difference, -0.7 percentage points; 95% confidence interval [CI], -2.1 to 0.7; P=0.31). There were no significant differences in rates of death from any cause at 30 days (3.6% with nesiritide vs. 4.0% with placebo; absolute difference, -0.4 percentage points; 95% CI, -1.3 to 0.5) or rates of worsening renal function, defined by more than a 25% decrease in the estimated glomerular filtration rate (31.4% vs. 29.5%; odds ratio, 1.09; 95% CI, 0.98 to 1.21; P=0.11). Nesiritide was not associated with an increase or a decrease in the rate of death and rehospitalization and had a small, nonsignificant effect on dyspnea when used in combination with other therapies. It was not associated with a worsening of renal function, but it was associated with an increase in rates of hypotension. On the basis of these results, nesiritide cannot be recommended for routine use in the broad population of patients with acute heart failure. (Funded by Scios; ClinicalTrials.gov number, NCT00475852.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Seventh INTERMACS annual report: 15,000 patients and counting.

              The seventh annual report of the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) summarizes the first 9 years of patient enrollment. The Registry includes >15,000 patients from 158 participating hospitals. Trends in device strategy, patient profile at implant and survival are presented. Risk factors for mortality with continuous-flow pumps are updated, and the major causes/modes of death are presented. The adverse event burden is compared between eras, and health-related quality of life is reviewed. A detailed analysis of outcomes after mechanical circulatory support for ambulatory heart failure is presented. Recent summary data from PediMACS and MedaMACS is included. With the current continuous-flow devices, survival at 1 and 2 years is 80% and 70%, respectively.
                Bookmark

                Author and article information

                Journal
                F1000Res
                F1000Res
                F1000Research
                F1000Research
                F1000Research (London, UK )
                2046-1402
                22 May 2017
                2017
                : 6
                : 737
                Affiliations
                [1 ]The Cardiovascular Center, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02339, USA
                Author notes

                Competing interests: Navin Kapur receives research support, consulting fees, and speaker honoraria from Abiomed Inc, Maquet-Getinge Inc, Abbott Inc, and CardiacAssist Inc. Michele Esposito declares that she has no competing interests.

                Author information
                http://orcid.org/0000-0002-9017-9037
                Article
                10.12688/f1000research.11150.1
                5443341
                28580136
                df279fb5-8d37-4cbc-97ae-3b7146049d30
                Copyright: © 2017 Esposito ML and Kapur NK

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 May 2017
                Funding
                The author(s) declared that no grants were involved in supporting this work.
                Categories
                Review
                Articles
                Acute Cardiovascular Problems
                Coronary Artery Disease
                Heart Failure

                ventricular unloading,acute mechanical circulatory support,cardiogenic shock,hemodynamics,percutaneous ventricular assist device

                Comments

                Comment on this article