14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wolbachia Inhibits Binding of Dengue and Zika Viruses to Mosquito Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As traditional approaches to the control of dengue and Zika are insufficient, significant efforts have been made to develop utilization of the endosymbiotic bacterium Wolbachia to reduce the ability of mosquitoes to transmit pathogens. Although Wolbachia is known to inhibit flaviviruses in mosquitoes, including dengue virus (DENV) and Zika virus (ZIKV), it remains unclear how the endosymbiont interferes with viral replication cycle. In this study, we have carried out viral binding assays to investigate the impact of the Wolbachia strain wAlbB on the attachment of DENV serotype 2 (DENV-2) and ZIKV to Aedes aegypti Aag-2 cells. RNA interference (RNAi) was used to silence a variety of putative mosquito receptors of DENV that were differentially regulated by wAlbB in Aag-2 cells, in order to identify host factors involved in the inhibition of viral binding. Our results showed that, in addition to suppression of viral replication, Wolbachia strongly inhibited binding of both DENV-2 and ZIKV to Aag-2 cells. Moreover, the expression of two putative mosquito DENV receptors – dystroglycan and tubulin – was downregulated by wAlbB, and their knock-down resulted in the inhibition of DENV-2 binding to Aag-2 cells. These results will aid in understanding the Wolbachia-DENV interactions in mosquito and the development of novel control strategies for mosquito-borne diseases.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites

          Summary Positive-strand RNA viruses are known to rearrange cellular membranes to facilitate viral genome replication. The biogenesis and three-dimensional organization of these membranes and the link between replication and virus assembly sites is not fully clear. Using electron microscopy, we find Dengue virus (DENV)-induced vesicles, convoluted membranes, and virus particles to be endoplasmic reticulum (ER)-derived, and we detect double-stranded RNA, a presumed marker of RNA replication, inside virus-induced vesicles. Electron tomography (ET) shows DENV-induced membrane structures to be part of one ER-derived network. Furthermore, ET reveals vesicle pores that could enable release of newly synthesized viral RNA and reveals budding of DENV particles on ER membranes directly apposed to vesicle pores. Thus, DENV modifies ER membrane structure to promote replication and efficient encapsidation of the genome into progeny virus. This architecture of DENV replication and assembly sites could explain the coordination of distinct steps of the flavivirus replication cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Incompatible and sterile insect techniques combined eliminate mosquitoes

            The radiation-based sterile insect technique (SIT) has successfully suppressed field populations of several insect pest species, but its effect on mosquito vector control has been limited. The related incompatible insect technique (IIT)-which uses sterilization caused by the maternally inherited endosymbiotic bacteria Wolbachia-is a promising alternative, but can be undermined by accidental release of females infected with the same Wolbachia strain as the released males. Here we show that combining incompatible and sterile insect techniques (IIT-SIT) enables near elimination of field populations of the world's most invasive mosquito species, Aedes albopictus. Millions of factory-reared adult males with an artificial triple-Wolbachia infection were released, with prior pupal irradiation of the released mosquitoes to prevent unintentionally released triply infected females from successfully reproducing in the field. This successful field trial demonstrates the feasibility of area-wide application of combined IIT-SIT for mosquito vector control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection.

              Wolbachia is a maternally transmitted symbiotic bacterium of insects that has been proposed as a potential agent for the control of insect-transmitted diseases. One of the major limitations preventing the development of Wolbachia for malaria control has been the inability to establish inherited infections of Wolbachia in anopheline mosquitoes. Here, we report the establishment of a stable Wolbachia infection in an important malaria vector, Anopheles stephensi. In A. stephensi, Wolbachia strain wAlbB displays both perfect maternal transmission and the ability to induce high levels of cytoplasmic incompatibility. Seeding of naturally uninfected A. stephensi populations with infected females repeatedly resulted in Wolbachia invasion of laboratory mosquito populations. Furthermore, wAlbB conferred resistance in the mosquito to the human malaria parasite Plasmodium falciparum.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                04 August 2020
                2020
                : 11
                : 1750
                Affiliations
                [1] 1 Department of Microbiology and Molecular Genetics, Michigan State University , East Lansing, MI, United States
                [2] 2 School of Basic Medical Sciences, Guizhou Medical University , Guiyang, China
                [3] 3 Guangzhou Center for Disease Control and Prevention , Guangzhou, China
                Author notes

                Edited by: Guido Favia, University of Camerino, Italy

                Reviewed by: Sassan Asgari, The University of Queensland, Australia; Elsa Beatriz Damonte, University of Buenos Aires, Argentina

                *Correspondence: Zhiyong Xi, xizy@ 123456msu.edu

                These authors have contributed equally to this work

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.01750
                7417768
                32849379
                df2b90f9-c00b-4055-b34d-ba6ae61b028b
                Copyright © 2020 Lu, Sun, Fu, Li, Liang and Xi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 May 2020
                : 03 July 2020
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 60, Pages: 12, Words: 9500
                Funding
                Funded by: National Institutes of Health/National Institute of Allergy and Infectious Diseases
                Award ID: R01AI080597
                Funded by: Michigan State University Strategic Partnership Grant
                Funded by: China Scholarship Council 10.13039/501100004543
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                wolbachia,dengue,zika,viral entry,mosquito
                Microbiology & Virology
                wolbachia, dengue, zika, viral entry, mosquito

                Comments

                Comment on this article