9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aging differentially affects male and female neural stem cell neurogenic properties

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Neural stem cell transplantation as a brain repair strategy is a very promising technology. However, despite many attempts, the clinical success remains very deceiving. Despite clear evidence that sexual dimorphism rules many aspects of human biology, the occurrence of a sex difference in neural stem cell biology is largely understudied. Herein, we propose to determine whether gender is a dimension that drives the fate of neural stem cells through aging. Should it occur, we believe that neural stem cell sexual dimorphism and its variation during aging should be taken into account to refine clinical approaches of brain repair strategies.

          Methods

          Neural stem cells were isolated from the subventricular zone of three- and 20-month-old male and female Long-Evans rats. Expression of the estrogen receptors, ERα and ERβ, progesterone receptor, androgen receptor, and glucocorticoid receptor was analyzed and quantified by Western blotting on undifferentiated neural stem cells. A second set of neural stem cells was treated with retinoic acid to trigger differentiation, and the expression of neuronal, astroglial, and oligodendroglial markers was determined using Western blotting.

          Conclusion

          We provided in vitro evidence that the fate of neural stem cells is affected by sex and aging. Indeed, young male neural stem cells mainly expressed markers of neuronal and oligodendroglial fate, whereas young female neural stem cells underwent differentiation towards an astroglial phenotype. Aging resulted in a lessened capacity to express neuron and astrocyte markers. Undifferentiated neural stem cells displayed sexual dimorphism in the expression of steroid receptors, in particular ERα and ERβ, and the expression level of several steroid receptors increased during aging. Such sexual dimorphism might explain, at least in part, the sex difference in neural fate we observed in young and old neural stem cells. These results suggest that sex and aging are two factors to be taken into consideration for future neural stem cell transplantation protocols in brain repair strategies.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Progesterone receptors: form and function in brain.

          Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRbeta and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and/or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of retinoid signalling in the adult brain.

            Vitamin A (all-trans-retinol) is the parent compound of a family of natural and synthetic compounds, the retinoids. Retinoids regulate gene transcription in numerous cells and tissues by binding to nuclear retinoid receptor proteins, which act as transcription factors. Much of the research conducted on retinoid signalling in the nervous system has focussed on developmental effects in the embryonic or early postnatal brain. Here, we review the increasing body of evidence indicating that retinoid signalling plays an important role in the function of the mature brain. Components of the metabolic pathway for retinoids have been identified in adult brain tissues, suggesting that all-trans-retinoic acid (ATRA) can be synthesized in discrete regions of the brain. The distribution of retinoid receptor proteins in the adult nervous system is different from that seen during development; and suggests that retinoid signalling is likely to have a physiological role in adult cortex, amygdala, hypothalamus, hippocampus, striatum and associated brain regions. A number of neuronal specific genes contain recognition sequences for the retinoid receptor proteins and can be directly regulated by retinoids. Disruption of retinoid signalling pathways in rodent models indicates their involvement in regulating synaptic plasticity and associated learning and memory behaviours. Retinoid signalling pathways have also been implicated in the pathophysiology of Alzheimer's disease, schizophrenia and depression. Overall, the data underscore the likely importance of adequate nutritional Vitamin A status for adult brain function and highlight retinoid signalling pathways as potential novel therapeutic targets for neurological diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The choroid plexus-cerebrospinal fluid system: from development to aging.

              The function of the cerebrospinal fluid (CSF) and the tissue that secretes it, the choroid plexus (CP), has traditionally been thought of as both providing physical protection to the brain through buoyancy and facilitating the removal of brain metabolites through the bulk drainage of CSF. More recent studies suggest, however, that the CP-CSF system plays a much more active role in the development, homeostasis, and repair of the central nervous system (CNS). The highly specialized choroidal tissue synthesizes trophic and angiogenic factors, chemorepellents, and carrier proteins, and is strategically positioned within the ventricular cavities to supply the CNS with these biologically active substances. Through polarized transport systems and receptor-mediated transcytosis across the choroidal epithelium, the CP, a part of the blood-CSF barrier (BCSFB), controls the entry of nutrients, such as amino acids and nucleosides, and peptide hormones, such as leptin and prolactin, from the periphery into the brain. The CP also plays an important role in the clearance of toxins and drugs. During CNS development, CP-derived growth factors, such as members of the transforming growth factor-beta superfamily and retinoic acid, play an important role in controlling the patterning of neuronal differentiation in various brain regions. In the adult CNS, the CP appears to be critically involved in neuronal repair processes and the restoration of the brain microenvironment after traumatic and ischemic brain injury. Furthermore, recent studies suggest that the CP acts as a nursery for neuronal and astrocytic progenitor cells. The advancement of our knowledge of the neuroprotective capabilities of the CP may therefore facilitate the development of novel therapies for ischemic stroke and traumatic brain injury. In the later stages of life, the CP-CSF axis shows a decline in all aspects of its function, including CSF secretion and protein synthesis, which may in themselves increase the risk for development of late-life diseases, such as normal pressure hydrocephalus and Alzheimer's disease. The understanding of the mechanisms that underlie the dysfunction of the CP-CSF system in the elderly may help discover the treatments needed to reverse the negative effects of aging that lead to global CNS failure.
                Bookmark

                Author and article information

                Journal
                Stem Cells Cloning
                Stem Cells Cloning
                Stem Cells and Cloning : Advances and Applications
                Dove Medical Press
                1178-6957
                2010
                01 September 2010
                : 3
                : 119-127
                Affiliations
                [1 ]The Research Institute of the McGill University Health Centre, Montreal, Canada;
                [2 ]Department of Medicine, McGill University, Montreal, Quebec, Canada
                Author notes
                Correspondence: Laurent Lecanu, MUHC-RI, 6100 Royalmount Avenue, Montreal H4P 2R2, Quebec, Canada, Tel +1 514 245 8180, Fax +1 514 283 6282, Email laurent.lecanu@ 123456mcgill.ca
                Article
                sccaa-3-119
                10.2147/SCCAA.S13035
                3781736
                24198517
                df2cda96-9dbe-4b1e-81e5-334d6fe3ceea
                © 2010 Waldron et al, publisher and licensee Dove Medical Press Ltd

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                Categories
                Original Research

                neuroregenerative medicine,brain repair strategy,gender difference,stem cell therapy,adult stem cells

                Comments

                Comment on this article