20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shikonin (SHK), a natural small agent (MW 288.3), reportedly induces cell death in various tumor cells. We have found that SHK also exerts potent cytocidal effects on human multiple myeloma (MM) cells, but its anticancer mechanism in MM cells remains to be elucidated. SHK at 2.5–5 μM induced apoptosis in seven MM cell lines, including the bortezomib-resistant cell line KMS11/BTZ. The IC 50 value of SHK against KMS11/BTZ was comparable to that of a parental cell line KMS11 (1.1 and 1.56 μM, respectively). SHK induces accumulation of ubiquitinated proteins and activates XBP-1 in MM cells, suggesting that SHK functions as a proteasome inhibitor, eventually inducing ER stress-associated apoptosis. SHK increases levels of HSP70/72, which protects cells from apoptosis, and exerts greater cytocidal effects in combination with the HSP70/72 inhibitor VER-155008. At higher concentrations (10–20 μM), SHK induced cell death, which was completely inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the cytocidal activity was unaffected by Z-VAD-FMK, strongly suggesting that cell death is induced by SHK at high concentrations through necroptosis. The present data show for the first time that SHK induces cell death in MM cells. SHK efficiently induces apoptosis and combination of heat shock protein inhibitor with low dose SHK enhances apoptosis, while high dose SHK induces necroptosis in MM cells. These findings together support the use of SHK as a potential therapeutic agent for MM.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway.

          Stimulation of death receptors by agonists such as FasL and TNFalpha activates apoptotic cell death in apoptotic-competent conditions or a type of necrotic cell death dependent on RIP1 kinase, termed necroptosis, in apoptotic-deficient conditions. In a genome-wide siRNA screen for regulators of necroptosis, we identify a set of 432 genes that regulate necroptosis, a subset of 32 genes that act downstream and/or as regulators of RIP1 kinase, 32 genes required for death-receptor-mediated apoptosis, and 7 genes involved in both necroptosis and apoptosis. We show that the expression of subsets of the 432 genes is enriched in the immune and nervous systems, and cellular sensitivity to necroptosis is regulated by an extensive signaling network mediating innate immunity. Interestingly, Bmf, a BH3-only Bcl-2 family member, is required for death-receptor-induced necroptosis. Our study defines a cellular signaling network that regulates necroptosis and the molecular bifurcation that controls apoptosis and necroptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caspase-8 regulates TNF-alpha induced epithelial necroptosis and terminal ileitis

            Dysfunction of the intestinal epithelium is believed to result in excessive translocation of commensal bacteria into the bowel wall that drives chronic mucosal inflammation in Crohn's disease; an incurable inflammatory bowel disease in humans characterized by inflammation of the terminal ileum 1 . Beside the physical barrier established by the tight contact of cells, specialized epithelial cells such as Paneth cells and goblet cells provide innate immune defence functions by secreting mucus and antimicrobial peptides which hamper access and survival of bacteria adjacent to the epithelium 2 . Epithelial cell death is a hallmark of intestinal inflammation and has been discussed as a pathogenic mechanism driving Crohn's disease (CD) in humans 3 . However, the regulation of epithelial cell death and its role in intestinal homeostasis remains poorly understood. Here we demonstrate a critical role for caspase-8 in regulating necroptosis of intestinal epithelial cells (IEC) and terminal ileitis. Mice with a conditional deletion of caspase-8 in the intestinal epithelium (Casp8 ΔIEC) spontaneously developed inflammatory lesions in the terminal ileum and were highly susceptible to colitis. Casp8 ΔIEC mice lacked Paneth cells and showed reduced numbers of goblet cells suggesting dysregulated anti-microbial immune cell functions of the intestinal epithelium. Casp8 ΔIEC mice showed increased cell death in the Paneth cell area of small intestinal crypts. Epithelial cell death was induced by tumor necrosis factor (TNF) -α, was associated with increased expression of receptor-interacting protein 3 (RIP3) and could be inhibited upon blockade of necroptosis. Finally, we identified high levels of RIP3 in human Paneth cells and increased necroptosis in the terminal ileum of patients with Crohn's disease, suggesting a potential role of necroptosis in the pathogenesis of this disease. Taken together, our data demonstrate a critical function of caspase-8 in regulating intestinal homeostasis and in protecting IEC from TNF-α induced necroptotic cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of HSP90 molecular chaperones: moving into the clinic.

              Heat shock protein 90 (HSP90) is a molecular chaperone that is crucial for the stability and function of many proteins essential for cell survival. Many oncogenes, including tyrosine kinases, transcription factors, and cell-cycle regulatory proteins, are client proteins of HSP90. Inhibition of HSP90 causes client protein degradation via the ubiquitin-proteasome pathway, and is a mechanism that might simultaneously downregulate several redundant pathways crucial for cell viability and tumour development. HSP90 inhibitors are currently being developed as anticancer agents, and have shown early promising results in molecularly defined subgroups of solid tumours (eg, ALK-rearranged non-small-cell lung cancer and HER2-amplified breast cancer) and some haematological malignancies (eg, multiple myeloma). Here, we review the current status of HSP90 inhibitors in clinical development, including geldanamycin derivatives, resorcinol derivatives, purine analogues, and other synthetic inhibitors. We also discuss novel strategies and future perspectives on how to optimise the therapeutic potential of this exciting new class of drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Oncol
                Int. J. Oncol
                IJO
                International Journal of Oncology
                D.A. Spandidos
                1019-6439
                1791-2423
                March 2015
                19 December 2014
                19 December 2014
                : 46
                : 3
                : 963-972
                Affiliations
                [1 ]Department of Hematology, Kumamoto University Hospital, Kumamoto, Japan
                [2 ]Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
                [3 ]Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
                [4 ]Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
                [5 ]Division of Informative Clinical Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
                [6 ]Department of Anatomy, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
                [7 ]Research Functions Unit, Kyowa Hakko Kirin Co., Ltd., Japan
                [8 ]Translational Oncology, Kyowa Hakko Kirin California Inc., La Jolla, CA, USA
                Author notes
                Correspondence to: Dr Hiroyuki Hata, Division of Informative Clinical Sciences, Faculty of Medical Sciences, Kumamoto University, Kumamoto, Japan, E-mail: hata@ 123456kumamoto-u.ac.jp
                Article
                ijo-46-03-0963
                10.3892/ijo.2014.2804
                4324584
                25530098
                df2cef24-ede9-45da-a70a-5390841ac4b0
                Copyright © 2015, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 29 September 2014
                : 19 November 2014
                Categories
                Articles

                multiple myeloma,apoptosis,necroptosis,heat shock protein,proteasome

                Comments

                Comment on this article