69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A pathology atlas of the human cancer transcriptome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4100258e327">Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical outcome. A general pattern emerged: Shorter patient survival was associated with up-regulation of genes involved in cell growth and with down-regulation of genes involved in cellular differentiation. Using genome-scale metabolic models, we show that cancer patients have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. All data are presented in an interactive open-access database (www.proteinatlas.org/pathology) to allow genome-wide exploration of the impact of individual proteins on clinical outcomes. </p>

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease.

          Several liver disorders result from perturbations in the metabolism of hepatocytes, and their underlying mechanisms can be outlined through the use of genome-scale metabolic models (GEMs). Here we reconstruct a consensus GEM for hepatocytes, which we call iHepatocytes2322, that extends previous models by including an extensive description of lipid metabolism. We build iHepatocytes2322 using Human Metabolic Reaction 2.0 database and proteomics data in Human Protein Atlas, which experimentally validates the incorporated reactions. The reconstruction process enables improved annotation of the proteomics data using the network centric view of iHepatocytes2322. We then use iHepatocytes2322 to analyse transcriptomics data obtained from patients with non-alcoholic fatty liver disease. We show that blood concentrations of chondroitin and heparan sulphates are suitable for diagnosing non-alcoholic steatohepatitis and for the staging of non-alcoholic fatty liver disease. Furthermore, we observe serine deficiency in patients with NASH and identify PSPH, SHMT1 and BCAT1 as potential therapeutic targets for the treatment of non-alcoholic steatohepatitis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reproducible RNA-seq analysis using recount2

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling

              Abstract Genome‐scale metabolic models (GEMs) have proven useful as scaffolds for the integration of omics data for understanding the genotype–phenotype relationship in a mechanistic manner. Here, we evaluated the presence/absence of proteins encoded by 15,841 genes in 27 hepatocellular carcinoma (HCC) patients using immunohistochemistry. We used this information to reconstruct personalized GEMs for six HCC patients based on the proteomics data, HMR 2.0, and a task‐driven model reconstruction algorithm (tINIT). The personalized GEMs were employed to identify anticancer drugs using the concept of antimetabolites; i.e., drugs that are structural analogs to metabolites. The toxicity of each antimetabolite was predicted by assessing the in silico functionality of 83 healthy cell type‐specific GEMs, which were also reconstructed with the tINIT algorithm. We predicted 101 antimetabolites that could be effective in preventing tumor growth in all HCC patients, and 46 antimetabolites which were specific to individual patients. Twenty‐two of the 101 predicted antimetabolites have already been used in different cancer treatment strategies, while the remaining antimetabolites represent new potential drugs. Finally, one of the identified targets was validated experimentally, and it was confirmed to attenuate growth of the HepG2 cell line.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                August 17 2017
                August 18 2017
                : 357
                : 6352
                : eaan2507
                Article
                10.1126/science.aan2507
                28818916
                df387280-2b09-4afb-a226-7c52a093fda2
                © 2017

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article