45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Giardia duodenalis Infection Reduces Granulocyte Infiltration in an In Vivo Model of Bacterial Toxin-Induced Colitis and Attenuates Inflammation in Human Intestinal Tissue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 10 6 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs) are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn’s disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time that certain Giardia infections may attenuate PMN accumulation by decreasing the expression of the mediators responsible for their recruitment.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: not found
          • Article: not found

          C-reactive protein: a critical update.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow.

            Neutrophils are a major component of the innate immune response. Their homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor, CXCR4. Attenuation of CXCR4 signaling leads to entry of neutrophils into the circulation through unknown mechanisms. We investigated the role of CXCR2-binding ELR+ chemokines in neutrophil trafficking using mouse mixed bone marrow chimeras reconstituted with Cxcr2(-/-) and WT cells. In this context, neutrophils lacking CXCR2 were preferentially retained in the bone marrow, a phenotype resembling the congenital disorder myelokathexis, which is characterized by chronic neutropenia. Additionally, transient disruption of CXCR4 failed to mobilize Cxcr2(-/-) neutrophils. However, neutrophils lacking both CXCR2 and CXCR4 displayed constitutive mobilization, showing that CXCR4 plays a dominant role in neutrophil trafficking. With regard to CXCR2 ligands, bone marrow endothelial cells and osteoblasts constitutively expressed the ELR+ chemokines CXCL1 and CXCL2, and CXCL2 expression was induced in endothelial cells during G-CSF-induced neutrophil mobilization. Collectively, these data suggest that CXCR2 signaling is a second chemokine axis that interacts antagonistically with CXCR4 to regulate neutrophil release from the bone marrow.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of neutrophils during intestinal inflammation.

              Polymorphonuclear leukocytes or neutrophils play a critical role in the maintenance of intestinal homeostasis. They have elegant defense mechanisms to eliminate microbes that have translocated across a single layer of mucosal epithelial cells that form a critical barrier between the gut lumen and the underlying tissue. During the inflammatory response, neutrophils also contribute to the recruitment of other immune cells and facilitate mucosal healing by releasing mediators necessary for the resolution of inflammation. Although the above responses are clearly beneficial, excessive recruitment and accumulation of activated neutrophils in the intestine under pathological conditions such as inflammatory bowel disease is associated with mucosal injury and debilitating disease symptoms. Thus, depending on the circumstances, neutrophils can be viewed as either good or bad. In this article, we summarize the beneficial and deleterious roles of neutrophils in the intestine during health and disease and provide an overview of what is known about neutrophil function in the gut.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                7 October 2014
                : 9
                : 10
                : e109087
                Affiliations
                [1 ]Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
                [2 ]Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
                [3 ]Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
                [4 ]Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
                [5 ]Department of Medicine, University of Calgary, Calgary, Alberta, Canada
                [6 ]Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
                [7 ]Department of Immunology, Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
                University of Calgary, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JAC SAH AGB. Performed the experiments: JAC JPM. Analyzed the data: JAC AGB. Contributed reagents/materials/analysis tools: PLB AGB LPS. Contributed to the writing of the manuscript: JAC AGB.

                Article
                PONE-D-14-37164
                10.1371/journal.pone.0109087
                4188619
                25289678
                df3c3a16-cc43-4bc5-bf07-12b1dfeab4c4
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 August 2014
                : 8 September 2014
                Page count
                Pages: 15
                Funding
                JA Cotton is a recipient of NSERC Alexander Graham Bell Scholarship graduate student scholarship and a joint IBD studentship from Alberta Innovates Health Solutions (AIHS) and the Crohn’s and colitis foundation of Canada (CCFC). Research in AG Buret's lab is funded by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) RT 690446, and the CCFC 10000008. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Granulocytes
                Immune Cells
                Immunology
                Immune Evasion
                Immunomodulation
                Medicine and Health Sciences
                Parasitic Diseases
                Protozoan Infections
                Giardiasis
                Parasitic Intestinal Diseases
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article