7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Overview of Lead and Accompaniment Separation in Music

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Popular music is often composed of an accompaniment and a lead component, the latter typically consisting of vocals. Filtering such mixtures to extract one or both components has many applications, such as automatic karaoke and remixing. This particular case of source separation yields very specific challenges and opportunities, including the particular complexity of musical structures, but also relevant prior knowledge coming from acoustics, musicology or sound engineering. Due to both its importance in applications and its challenging difficulty, lead and accompaniment separation has been a popular topic in signal processing for decades. In this article, we provide a comprehensive review of this research topic, organizing the different approaches according to whether they are model-based or data-centered. For model-based methods, we organize them according to whether they concentrate on the lead signal, the accompaniment, or both. For data-centered approaches, we discuss the particular difficulty of obtaining data for learning lead separation systems, and then review recent approaches, notably those based on deep learning. Finally, we discuss the delicate problem of evaluating the quality of music separation through adequate metrics and present the results of the largest evaluation, to-date, of lead and accompaniment separation systems. In conjunction with the above, a comprehensive list of references is provided, along with relevant pointers to available implementations and repositories.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: not found
          • Article: not found

          Normalized cuts and image segmentation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

            The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences

                Bookmark

                Author and article information

                Journal
                23 April 2018
                Article
                1804.08300
                df3d5802-389c-4b65-ac93-d09ed10b5c8d

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.SD eess.AS

                Electrical engineering,Graphics & Multimedia design
                Electrical engineering, Graphics & Multimedia design

                Comments

                Comment on this article