1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      (-)-Epicatechin and NADPH oxidase inhibitors prevent bile acid-induced Caco-2 monolayer permeabilization through ERK1/2 modulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Secondary bile acids promote gastrointestinal (GI) tract permeabilization both in vivo and in vitro. Consumption of high fat diets increases bile acid levels in the GI tract which can contribute to intestinal permeabilization and consequent local and systemic inflammation. This work investigated the mechanisms involved in bile acid (deoxycholic acid (DCA))-induced intestinal epithelial cell monolayer permeabilization and the preventive capacity of (-)-epicatechin (EC). While EC prevented high fat diet-induced intestinal permeabilization in mice, it did not mitigate the associated increase in fecal/cecal total and individual bile acids. In vitro, using differentiated Caco-2 cells as a model of epithelial barrier, EC and other NADPH oxidase inhibitors (VAS-2870 and apocynin) mitigated DCA-induced Caco-2 monolayer permeabilization. While EC inhibited DCA-mediated increase in cell oxidants, it did not prevent DCA-induced mitochondrial oxidant production. Prevention of DCA-induced ERK1/2 activation with EC, VAS-2870, apocynin and the MEK inhibitor U0126, also prevented monolayer permeabilization, stressing the key involvement of ERK1/2 in this process and its redox regulation. Downstream, DCA promoted myosin light chain (MLC) phosphorylation which was related to MLC phosphatase (MLCP) inhibition by ERK1/2. DCA also decreased the levels of the tight junction proteins ZO-1 and occludin, which can be related to MMP-2 activation and consequent ZO-1 and occludin degradation. Both events were prevented by EC, NADPH oxidase and ERK1/2 inhibitors. Thus, DCA-induced Caco-2 monolayer permeabilization occurs mainly secondary to a redox-regulated ERK1/2 activation and downstream disruption of TJ structure and dynamic. EC's capacity to mitigate in vivo the gastrointestinal permeabilization caused by consumption of high-fat diets can be in part related to its capacity to inhibit bile-induced NADPH oxidase and ERK1/2 activation.

          Graphical abstract

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway

          Background & Aims While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Here, we investigated the effect of endotoxin-induced inflammation via TLR4 signaling pathway at both systemic and intestinal levels in response to a high-fat diet. Methods C57BL/6J and TLR4-deficient C57BL/10ScNJ mice were maintained on a low-fat (10 kcal % fat) diet (LFD) or a high–fat (60 kcal % fat) diet (HFD) for 8 weeks. Results HFD induced macrophage infiltration and inflammation in the adipose tissue, as well as an increase in the circulating proinflammatory cytokines. HFD increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteriodetes ratio. HFD induced the growth of Enterobecteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. HFD mice demonstrated higher levels of Akt and FOXO3 phosphorylation in the colon compared to the LFD mice. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight and plasma endotoxin level of HFD-fed TLR4-deficient mice were 69% and 18% of HFD-fed wild type mice, respectively. Furthermore, HFD did not increase the proinflammatory cytokine levels in TLR4-deficient mice. Conclusions HFD induces inflammation by increasing endotoxin levels in the intestinal lumen as well as in the plasma by altering the gut microbiota composition and increasing its intestinal permeability through the induction of TLR4, thereby accelerating obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction.

            Obesity and associated metabolic disorders are related to impairments of the intestinal barrier.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Flavonoids and the gastrointestinal tract: Local and systemic effects

                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                22 October 2019
                January 2020
                22 October 2019
                : 28
                : 101360
                Affiliations
                [a ]Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
                [b ]Fisicoquímica, Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
                [c ]Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
                Author notes
                []Corresponding author. Department of Nutrition, University of California, Davis, One Shields Av. Davis, CA 95616, USA. poteiza@ 123456ucdavis.edu
                Article
                S2213-2317(19)31145-0 101360
                10.1016/j.redox.2019.101360
                6920094
                31677553
                df62a05a-d49f-426b-93e7-19ed68dded84
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 18 September 2019
                : 19 October 2019
                : 21 October 2019
                Categories
                Research Paper

                bile acids,deoxycholic acid,epicatechin,intestinal permeability,high fat,dca, deoxycholic acid,dcfda, 5-(and-6)-carboxy-2′7′-dichlorodihydrofluorescein diacetate,dhe, dihydroethidium,ec, (-)-epicatechin,egf, epidermal growth factor,egfr, egf receptor,erk, extracellular signal-regulated kinase,gi, gastrointestinal,mlc, myosin light chain,mlck, mlc kinase,mem, minimum essential medium,mmp, matrix metalloproteinase,nox, nadph oxidase,ros, reactive oxygen species,tj, tight junction

                Comments

                Comment on this article