32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Traumatic brain injury (TBI) initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial hypertension and has immunomodulatory properties that may confer neuroprotection. This study examined the impact of hypertonic fluids on inflammatory/coagulation cascades in isolated head injury.

          Methods

          Using a prospective, randomized controlled trial we investigated the impact of prehospital resuscitation of severe TBI (GCS < 8) patients using 7.5% hypertonic saline in combination with 6% dextran-70 (HSD) vs 0.9% normal saline (NS), on selected cellular and soluble inflammatory/coagulation markers. Serial blood samples were drawn from 65 patients (30 HSD, 35 NS) at the time of hospital admission and at 12, 24, and 48-h post-resuscitation. Flow cytometry was used to analyze leukocyte cell-surface adhesion (CD62L, CD11b) and degranulation (CD63, CD66b) molecules. Circulating concentrations of soluble (s)L- and sE-selectins (sL-, sE-selectins), vascular and intercellular adhesion molecules (sVCAM-1, sICAM-1), pro/antiinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL-10)], tissue factor (sTF), thrombomodulin (sTM) and D-dimers (D-D) were assessed by enzyme immunoassay. Twenty-five healthy subjects were studied as a control group.

          Results

          TBI provoked marked alterations in a majority of the inflammatory/coagulation markers assessed in all patients. Relative to control, NS patients showed up to a 2-fold higher surface expression of CD62L, CD11b and CD66b on polymorphonuclear neutrophils (PMNs) and monocytes that persisted for 48-h. HSD blunted the expression of these cell-surface activation/adhesion molecules at all time-points to levels approaching control values. Admission concentrations of endothelial-derived sVCAM-1 and sE-selectin were generally reduced in HSD patients. Circulating sL-selectin levels were significantly elevated at 12 and 48, but not 24 h post-resuscitation with HSD. TNF-α and IL-10 levels were elevated above control throughout the study period in all patients, but were reduced in HSD patients. Plasma sTF and D-D levels were also significantly lower in HSD patients, whereas sTM levels remained at control levels.

          Conclusions

          These findings support an important modulatory role of HSD resuscitation in attenuating the upregulation of leukocyte/endothelial cell proinflammatory/prothrombotic mediators, which may help ameliorate secondary brain injury after TBI.

          Trial registration

          NCT00878631.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          The coagulopathy of trauma: a review of mechanisms.

          Bleeding is the most frequent cause of preventable death after severe injury. Coagulopathy associated with severe injury complicates the control of bleeding and is associated with increased morbidity and mortality in trauma patients. The causes and mechanisms are multiple and yet to be clearly defined. Articles addressing the causes and consequences of trauma-associated coagulopathy were identified and reviewed. Clinical situations in which the various mechanistic causes are important were sought along with quantitative estimates of their importance. Coagulopathy associated with traumatic injury is the result of multiple independent but interacting mechanisms. Early coagulopathy is driven by shock and requires thrombin generation from tissue injury as an initiator. Initiation of coagulation occurs with activation of anticoagulant and fibrinolytic pathways. This Acute Coagulopathy of Trauma-Shock is altered by subsequent events and medical therapies, in particular acidemia, hypothermia, and dilution. There is significant interplay between all mechanisms. There is limited understanding of the mechanisms by which tissue trauma, shock, and inflammation initiate trauma coagulopathy. Acute Coagulopathy of Trauma-Shock should be considered distinct from disseminated intravascular coagulation as described in other conditions. Rapid diagnosis and directed interventions are important areas for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Closed head injury--an inflammatory disease?

            Closed head injury (CHI) remains the leading cause of death and persisting neurological impairment in young individuals in industrialized nations. Research efforts in the past years have brought evidence that the intracranial inflammatory response in the injured brain contributes to the neuropathological sequelae which are, in large part, responsible for the adverse outcome after head injury. The presence of hypoxia and hypotension in the early resuscitative period of brain-injured patients further aggravates the inflammatory response in the brain due to ischemia/reperfusion-mediated injuries. The profound endogenous neuroinflammatory response after CHI, which is phylogenetically aimed at defending the intrathecal compartment from invading pathogens and repairing lesioned brain tissue, contributes to the development of cerebral edema, breakdown of the blood-brain barrier, and ultimately to delayed neuronal cell death. However, aside from these deleterious effects, neuroinflammation has been recently shown to mediate neuroreparative mechanisms after brain injury as well. This "dual effect" of neuroinflammation was the focus of extensive experimental and clinical research in the past years and has lead to an expanded basic knowledge on the cellular and molecular mechanisms which regulate the intracranial inflammatory response after CHI. Thus, head injury has recently evolved as an inflammatory and immunological disease much more than a pure traumatological, neurological, or neurosurgical entity. The present review will summarize the so far known mechanisms of posttraumatic neuroinflammation after CHI, based on data from clinical and experimental studies, with a special focus on the role of pro-inflammatory cytokines, chemokines, and the complement system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leukocyte – endothelial interactions in inflammation

              At sites of inflammation, infection or vascular injury local proinflammatory or pathogen-derived stimuli render the luminal vascular endothelial surface attractive for leukocytes. This innate immunity response consists of a well-defined and regulated multi-step cascade involving consecutive steps of adhesive interactions between the leukocytes and the endothelium. During the initial contact with the activated endothelium leukocytes roll along the endothelium via a loose bond which is mediated by selectins. Subsequently, leukocytes are activated by chemokines presented on the luminal endothelial surface, which results in the activation of leukocyte integrins and the firm leukocyte arrest on the endothelium. After their firm adhesion, leukocytes make use of two transmigration processes to pass the endothelial barrier, the transcellular route through the endothelial cell body or the paracellular route through the endothelial junctions. In addition, further circulating cells, such as platelets arrive early at sites of inflammation contributing to both coagulation and to the immune response in parts by facilitating leukocyte–endothelial interactions. Platelets have thereby been implicated in several inflammatory pathologies. This review summarizes the major mechanisms and molecules involved in leukocyte–endothelial and leukocyte-platelet interactions in inflammation.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2010
                18 January 2010
                : 7
                : 5
                Affiliations
                [1 ]Defence Research and Development Canada (DRDC), Toronto, Canada
                [2 ]Graduate Program in Kinesiology and Health Science, York University, Toronto, Canada
                [3 ]Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
                [4 ]Brain Injury Laboratory, Cara Phelan Centre for Trauma Research Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
                [5 ]Critical Care Medicine, St Michael's Hospital, University of Toronto, Ontario, Canada
                [6 ]Rescu, Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
                [7 ]Department of Surgery and Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
                Article
                1742-2094-7-5
                10.1186/1742-2094-7-5
                2819256
                20082712
                df69dd7a-6d83-4058-b54f-64e83aaf04df
                Copyright ©2010 Rhind et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 November 2009
                : 18 January 2010
                Categories
                Research

                Neurosciences
                Neurosciences

                Comments

                Comment on this article