2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of vegetables on the microbiota of the rice bran pickling bed Nukadoko

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nukadoko, a fermented rice bran bed for pickling vegetables called nukazuke, has a complex microbiota. Within it, deep interactions between the microbiota of the pickled vegetables and nukadoko characterize and control the qualities of both products. To address this notion, we monitored the changes in the microbiota of nukadoko and nukazuke while pickling different vegetables. Raw or roasted rice bran was mixed with salted water and fermented at 24°C for 40 days, following which different species of vegetable, Cucumis sativus var. sativus, Brassica oleracea var. capitata, or Raphanus sativus var. hortensis, were pickled. The microbial composition of the washing solution of fresh vegetables, as well as that of the nukadoko and nukazuke for each vegetable, was analyzed by amplicon sequencing of 16S rRNA genes. Although the microbiota of nukadoko varied depending on the species of pickled vegetables, no transcolonization of any species of bacteria from fresh vegetables to nukadoko was observed. However, some lactic acid bacterium (LAB) species eventually dominated the microbiota of both nukazuke and matured nukadoko, although they were not detected in either the fresh vegetables or rice bran. Particularly, Lactiplantibacillus plantarum was dominant among all pairs of pickled vegetables and matured nukadoko, whereas the transcolonization of some other LAB species was observed in a pickled vegetable-specific manner. Staphylococcus xylosus was observed to some extent in each nukadoko, yet it was not detected in any nukazuke. Overall, a LAB-dominant microbiota was established in both nukadoko and nukazuke in an underlying process that was different but partly common among vegetables.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          QIIME allows analysis of high-throughput community sequencing data.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea.

            Salinity is a major factor controlling the distribution of biota in aquatic systems, and most aquatic multicellular organisms are either adapted to life in saltwater or freshwater conditions. Consequently, the saltwater-freshwater mixing zones in coastal or estuarine areas are characterized by limited faunal and floral diversity. Although changes in diversity and decline in species richness in brackish waters is well documented in aquatic ecology, it is unknown to what extent this applies to bacterial communities. Here, we report a first detailed bacterial inventory from vertical profiles of 60 sampling stations distributed along the salinity gradient of the Baltic Sea, one of world's largest brackish water environments, generated using 454 pyrosequencing of partial (400 bp) 16S rRNA genes. Within the salinity gradient, bacterial community composition altered at broad and finer-scale phylogenetic levels. Analogous to faunal communities within brackish conditions, we identified a bacterial brackish water community comprising a diverse combination of freshwater and marine groups, along with populations unique to this environment. As water residence times in the Baltic Sea exceed 3 years, the observed bacterial community cannot be the result of mixing of fresh water and saltwater, but our study represents the first detailed description of an autochthonous brackish microbiome. In contrast to the decline in the diversity of multicellular organisms, reduced bacterial diversity at brackish conditions could not be established. It is possible that the rapid adaptation rate of bacteria has enabled a variety of lineages to fill what for higher organisms remains a challenging and relatively unoccupied ecological niche.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease.

              The mucosa-associated gut microbiota directly modulates epithelial and mucosal function. In this study, we investigated the mucosa-associated microbial community in patients with inflammatory bowel disease (IBD), using endoscopic brush samples.
                Bookmark

                Author and article information

                Journal
                Biosci Microbiota Food Health
                Biosci Microbiota Food Health
                BMFH
                Bioscience of Microbiota, Food and Health
                BMFH Press
                2186-6953
                2186-3342
                10 June 2024
                2024
                : 43
                : 4
                : 359-366
                Affiliations
                [1 ]Research Institute of Pickles Function, Tokai Pickling Co., Ltd., 78-1 Mukaigo, Mukokusama, Toyohashi, Aichi 441-8142, Japan
                [2 ]Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
                Author notes
                *Corresponding author. Jiro Nakayama (E-mail: nakayama@ 123456agr.kyushu-u.ac.jp )
                Article
                2023-104
                10.12938/bmfh.2023-104
                11444858
                39364126
                df7c76c5-49b8-4384-bb85-f33b2bb46ba5
                ©2024 BMFH Press

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/ )

                History
                : 12 December 2023
                : 21 May 2024
                Categories
                Full Paper

                nukadoko,nukazuke,microbiota analysis,bacterial adhesion

                Comments

                Comment on this article