59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conditionally Immortalized Mouse Embryonic Fibroblasts Retain Proliferative Activity without Compromising Multipotent Differentiation Potential

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesenchymal stem cells (MSCs) are multipotent cells which reside in many tissues and can give rise to multiple lineages including bone, cartilage and adipose. Although MSCs have attracted significant attention for basic and translational research, primary MSCs have limited life span in culture which hampers MSCs' broader applications. Here, we investigate if mouse mesenchymal progenitors can be conditionally immortalized with SV40 large T antigen and maintain long-term cell proliferation without compromising their multipotency. Using the system which expresses SV40 large T antigen flanked with Cre/loxP sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized by SV40 large T antigen. The conditionally immortalized MEFs (iMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by Cre recombinase. The iMEFs express most MSC markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages under appropriate differentiation conditions in vitro and in vivo. The removal of SV40 large T reduces the differentiation potential of iMEFs possibly due to the decreased progenitor expansion. Furthermore, the iMEFs are apparently not tumorigenic when they are subcutaneously injected into athymic nude mice. Thus, the conditionally immortalized iMEFs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages. Our results suggest that the reversible immortalization strategy using SV40 large T antigen may be an efficient and safe approach to establishing long-term cell culture of primary mesenchymal progenitors for basic and translational research, as well as for potential clinical applications.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of c-MYC as a target of the APC pathway.

          The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simplified system for generating recombinant adenoviruses.

            Recombinant adenoviruses provide a versatile system for gene expression studies and therapeutic applications. We report herein a strategy that simplifies the generation and production of such viruses. A recombinant adenoviral plasmid is generated with a minimum of enzymatic manipulations, using homologous recombination in bacteria rather than in eukaryotic cells. After transfections of such plasmids into a mammalian packaging cell line, viral production is conveniently followed with the aid of green fluorescent protein, encoded by a gene incorporated into the viral backbone. Homogeneous viruses can be obtained from this procedure without plaque purification. This system should expedite the process of generating and testing recombinant adenoviruses for a variety of purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiomyocytes can be generated from marrow stromal cells in vitro.

              We have isolated a cardiomyogenic cell line (CMG) from murine bone marrow stromal cells. Stromal cells were immortalized, treated with 5-azacytidine, and spontaneously beating cells were repeatedly screened. The cells showed a fibroblast-like morphology, but the morphology changed after 5-azacytidine treatment in approximately 30% of the cells; they connected with adjoining cells after one week, formed myotube-like structures, began spontaneously beating after two weeks, and beat synchronously after three weeks. They expressed atrial natriuretic peptide and brain natriuretic peptide and were stained with anti-myosin, anti-desmin, and anti-actinin antibodies. Electron microscopy revealed a cardiomyocyte-like ultrastructure, including typical sarcomeres, a centrally positioned nucleus, and atrial granules. These cells had several types of action potentials, such as sinus node-like and ventricular cell-like action potentials. All cells had a long action potential duration or plateau, a relatively shallow resting membrane potential, and a pacemaker-like late diastolic slow depolarization. Analysis of the isoform of contractile protein genes, such as myosin heavy chain, myosin light chain, and alpha-actin, indicated that their muscle phenotype was similar to that of fetal ventricular cardiomyocytes. These cells expressed Nkx2.5/Csx, GATA4, TEF-1, and MEF-2C mRNA before 5-azacytidine treatment and expressed MEF-2A and MEF-2D after treatment. This new cell line provides a powerful model for the study of cardiomyocyte differentiation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                23 February 2012
                : 7
                : 2
                : e32428
                Affiliations
                [1 ]School of Bioengineering, Chongqing University, Chongqing, China
                [2 ]Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
                [3 ]Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics co-designated by Chinese Ministry of Education and Chongqing Bureau of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China
                [4 ]Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
                [5 ]Department of Cell Biology, Third Military Medical University, Chongqing, China
                [6 ]Institute of Materia Medica, Zhejiang Chinese Medical University, Hangzhou, China
                [7 ]Department of Geriatrics, Xinhua Hospital of Shanghai Jiatong University, Shanghai, China
                [8 ]Department of Orthopaedic Surgery, The Affiliated Tangdu Hospital, Fourth Military Medical University, Xi'an, China
                University of Medicine and Dentistry of New Jersey, United States of America
                Author notes

                Conceived and designed the experiments: TCH LY EH RCH HHL. Performed the experiments: EH YB WJ X. Luo KY JLG YG QS. Analyzed the data: SHK YG QL X. Liu JS NH RRR BCH. Contributed reagents/materials/analysis tools: HL ML JC WZ RL XC YK JZ JW BCH JL HW. Wrote the paper: LY RCH HHL RRR TCH. Provided materials: YG QS.

                Article
                PONE-D-11-21231
                10.1371/journal.pone.0032428
                3285668
                22384246
                df800e61-8fc9-40f5-8a66-60f92031dc2c
                Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 25 October 2011
                : 26 January 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Biotechnology
                Developmental Biology
                Stem Cells
                Molecular Cell Biology
                Cellular Types
                Stem Cells

                Uncategorized
                Uncategorized

                Comments

                Comment on this article