5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Yottixel -- An Image Search Engine for Large Archives of Histopathology Whole Slide Images

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the emergence of digital pathology, searching for similar images in large archives has gained considerable attention. Image retrieval can provide pathologists with unprecedented access to the evidence embodied in already diagnosed and treated cases from the past. This paper proposes a search engine specialized for digital pathology, called Yottixel, a portmanteau for "one yotta pixel," alluding to the big-data nature of histopathology images. The most impressive characteristic of Yottixel is its ability to represent whole slide images (WSIs) in a compact manner. Yottixel can perform millions of searches in real-time with a high search accuracy and low storage profile. Yottixel uses an intelligent indexing algorithm capable of representing WSIs with a mosaic of patches by converting them into a small number of methodically extracted barcodes, called "Bunch of Barcodes" (BoB), the most prominent performance enabler of Yottixel. The performance of the prototype platform is qualitatively tested using 300 WSIs from the University of Pittsburgh Medical Center (UPMC) and 2,020 WSIs from The Cancer Genome Atlas Program (TCGA) provided by the National Cancer Institute. Both datasets amount to more than 4,000,000 patches of 1000x1000 pixels. We report three sets of experiments that show that Yottixel can accurately retrieve organs and malignancies, and its semantic ordering shows good agreement with the subjective evaluation of human observers.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Digital pathology and artificial intelligence

          In modern clinical practice, digital pathology has a crucial role and is increasingly a technological requirement in the scientific laboratory environment. The advent of whole-slide imaging, availability of faster networks, and cheaper storage solutions has made it easier for pathologists to manage digital slide images and share them for clinical use. In parallel, unprecedented advances in machine learning have enabled the synergy of artificial intelligence and digital pathology, which offers image-based diagnosis possibilities that were once limited only to radiology and cardiology. Integration of digital slides into the pathology workflow, advanced algorithms, and computer-aided diagnostic techniques extend the frontiers of the pathologist's view beyond a microscopic slide and enable true utilisation and integration of knowledge that is beyond human limits and boundaries, and we believe there is clear potential for artificial intelligence breakthroughs in the pathology setting. In this Review, we discuss advancements in digital slide-based image diagnosis for cancer along with some challenges and opportunities for artificial intelligence in digital pathology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Image analysis and machine learning in digital pathology: Challenges and opportunities

            With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of “big data”. It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine “sub-visual” image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification. We also briefly review some of the state of the art in fusion of radiology and pathology images and also combining digital pathology derived image measurements with molecular “omics” features for better predictive modeling. The review ends with a brief discussion of some of the technical and computational challenges to be overcome and reflects on future opportunities for the quantitation of histopathology.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Deep Learning for Content-Based Image Retrieval

                Bookmark

                Author and article information

                Journal
                20 November 2019
                Article
                1911.08748
                df8470b7-bc81-499e-b935-a87eba6fbb28

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                eess.IV cs.CV cs.LG

                Computer vision & Pattern recognition,Artificial intelligence,Electrical engineering

                Comments

                Comment on this article