26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantifying Clonal and Subclonal Passenger Mutations in Cancer Evolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The vast majority of mutations in the exome of cancer cells are passengers, which do not affect the reproductive rate of the cell. Passengers can provide important information about the evolutionary history of an individual cancer, and serve as a molecular clock. Passengers can also become targets for immunotherapy or confer resistance to treatment. We study the stochastic expansion of a population of cancer cells describing the growth of primary tumors or metastatic lesions. We first analyze the process by looking forward in time and calculate the fixation probabilities and frequencies of successive passenger mutations ordered by their time of appearance. We compute the likelihood of specific evolutionary trees, thereby informing the phylogenetic reconstruction of cancer evolution in individual patients. Next, we derive results looking backward in time: for a given subclonal mutation we estimate the number of cancer cells that were present at the time when that mutation arose. We derive exact formulas for the expected numbers of subclonal mutations of any frequency. Fitting this formula to cancer sequencing data leads to an estimate for the ratio of birth and death rates of cancer cells during the early stages of clonal expansion.

          Author Summary

          Cancer is the consequence of an evolutionary process, which lasts several decades, is impossible to observe during most of its time, and only becomes apparent in late stages. We use mathematical modeling to shed light on the evolutionary dynamics of cancer by studying the accumulation of passenger mutations. We show that the frequencies obtained by passenger mutations depend strongly on the ratio of death and birth rates of cancer cells. We use genetic data of colorectal cancer to estimate this important quantity in vivo. We estimate the size of the cancer cell population that was present when a specific mutation first emerged. Our theory informs the analysis of cancer sequencing data and the phylogenetic reconstruction of cancer evolution.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative lesion sequencing provides insights into tumor evolution.

          We show that the times separating the birth of benign, invasive, and metastatic tumor cells can be determined by analysis of the mutations they have in common. When combined with prior clinical observations, these analyses suggest the following general conclusions about colorectal tumorigenesis: (i) It takes approximately 17 years for a large benign tumor to evolve into an advanced cancer but <2 years for cells within that cancer to acquire the ability to metastasize; (ii) it requires few, if any, selective events to transform a highly invasive cancer cell into one with the capacity to metastasize; (iii) the process of cell culture ex vivo does not introduce new clonal mutations into colorectal tumor cell populations; and (iv) the rates at which point mutations develop in advanced cancers are similar to those of normal cells. These results have important implications for understanding human tumor pathogenesis, particularly those associated with metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolutionary dynamics of cancer in response to targeted combination therapy

            In solid tumors, targeted treatments can lead to dramatic regressions, but responses are often short-lived because resistant cancer cells arise. The major strategy proposed for overcoming resistance is combination therapy. We present a mathematical model describing the evolutionary dynamics of lesions in response to treatment. We first studied 20 melanoma patients receiving vemurafenib. We then applied our model to an independent set of pancreatic, colorectal, and melanoma cancer patients with metastatic disease. We find that dual therapy results in long-term disease control for most patients, if there are no single mutations that cause cross-resistance to both drugs; in patients with large disease burden, triple therapy is needed. We also find that simultaneous therapy with two drugs is much more effective than sequential therapy. Our results provide realistic expectations for the efficacy of new drug combinations and inform the design of trials for new cancer therapeutics. DOI: http://dx.doi.org/10.7554/eLife.00747.001
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation.

              Although it has been hypothesized that some of the somatic mutations found in tumors may occur before tumor initiation, there is little experimental or conceptual data on this topic. To gain insights into this fundamental issue, we formulated a mathematical model for the evolution of somatic mutations in which all relevant phases of a tissue's history are considered. The model makes the prediction, validated by our empirical findings, that the number of somatic mutations in tumors of self-renewing tissues is positively correlated with the age of the patient at diagnosis. Importantly, our analysis indicates that half or more of the somatic mutations in certain tumors of self-renewing tissues occur before the onset of neoplasia. The model also provides a unique way to estimate the in vivo tissue-specific somatic mutation rates in normal tissues directly from the sequencing data of tumors. Our results have substantial implications for the interpretation of the large number of genome-wide cancer studies now being undertaken.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                February 2016
                1 February 2016
                : 12
                : 2
                : e1004731
                Affiliations
                [1 ]Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, United States of America
                [2 ]Department of Mathematics, Harvard University, Cambridge, Massachusetts, United States of America
                [3 ]Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
                National Research Council of Canada, CANADA
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: IB MAN. Performed the experiments: IB. Analyzed the data: IB JMG. Contributed reagents/materials/analysis tools: IB. Wrote the paper: IB JMG MAN. Performed mathematical analysis and wrote computer simulation: IB. Analyzed cancer sequencing data: JMG IB.

                Article
                PCOMPBIOL-D-15-01296
                10.1371/journal.pcbi.1004731
                4734774
                26828429
                df8857bd-0a9e-45c1-983b-7d0409b8ae03
                © 2016 Bozic et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 August 2015
                : 4 January 2016
                Page count
                Figures: 4, Tables: 2, Pages: 19
                Funding
                This work was funded by: Foundational Questions in Evolutionary Biology Grant RFP-12-17 (IB), Landry Cancer Biology Fellowship (JMG) and the John Templeton Foundation (MAN). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Genetics
                Mutation
                Point Mutation
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Phylogenetic Analysis
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Phylogenetic Analysis
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Cycle and Cell Division
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Systematics
                Phylogenetics
                Biology and Life Sciences
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Computer and Information Sciences
                Data Management
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Immunology
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Death
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Colorectal Cancer
                Biology and Life Sciences
                Genetics
                Mutation
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article