7
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Isoflurane Protects Human Kidney Proximal Tubule Cells against Necrosis via Sphingosine Kinase and Sphingosine-1-Phosphate Generation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: We previously showed that the inhalational anesthetic isoflurane protects against renal ischemia reperfusion injury in part via sphingosine kinase (SK)-mediated synthesis of sphingosine-1-phosphate (S1P). In this study, we tested the hypothesis that isoflurane directly targets renal proximal tubule cells via SK activation, S1P synthesis and activation of S1P receptors to initiate cytoprotective signaling. Methods and Results: Isoflurane-mediated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt and induction of HSP70 in human kidney proximal tubule (HK-2) cells were inhibited by dimethylsphingosine (DMS), an SK inhibitor, and VPC23019, an S1P<sub>1/3</sub> receptor selective antagonist, in HK-2 cells. A selective S1P<sub>1</sub> receptor agonist, SEW2781, mimicked isoflurane-induced phosphorylation of ERK and Akt and induction of HSP70. Moreover, isoflurane-mediated protection against H<sub>2</sub>O<sub>2</sub>-induced necrosis of HK-2 cells was significantly attenuated by an S1P<sub>1/3</sub> receptor antagonist, VPC23019, and by SK inhibitors DMS or 4-[[4- (4-chlorophenyl)-2-thiazolyl]amino]phenol. Finally, overexpression of the SK1 enzyme in HK-2 cells protected against H<sub>2</sub>O<sub>2</sub>-induced necrosis. Conclusions: Collectively, our study demonstrates that S1P released via isoflurane-mediated SK1 stimulation produces direct anti-necrotic effects probably via S1P<sub>1</sub> receptor-mediated cytoprotective signaling (ERK/Akt phosphorylation and HSP70 induction) in HK-2 cells. Our findings may help to unravel the cellular signaling pathways of volatile anesthetic-mediated renal protection and lead to new therapeutic applications of volatile anesthetics during the perioperative period.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Recent advances in the pathophysiology of ischemic acute renal failure.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury.

            Our prior in vitro studies indicate that sphingosine 1-phosphate (S1P), a phospholipid angiogenic factor, produces endothelial cell barrier enhancement through ligation of endothelial differentiation gene family receptors. We hypothesized that S1P may reduce the vascular leak associated with acute lung injury and found that S1P infusion produced a rapid and significant reduction in lung weight gain (more than 50%) in the isolated perfused murine lung. The effect of S1P was next assessed in a murine model of LPS-mediated microvascular permeability and inflammation with marked increases in parameters of lung injury at both 6 and 24 hours after intratracheal LPS. Each parameter assessed was significantly reduced by intravenous S1P (1 microM final) and in selected experiments by the S1P analogue FTY720 (0.1 mg/kg, intraperitoneally) delivered 1 hour after LPS. S1P produced an approximately 40-50% reduction in LPS-mediated extravasation of Evans blue dye albumin, bronchoalveolar lavage protein content, and lung tissue myeloperoxidase activity (reflecting phagocyte infiltration). Consistent with systemic barrier enhancement, S1P significantly decreased Evans blue dye albumin extravasation and myeloperoxidase content in renal tissues of LPS-treated mice. These studies indicate that S1P significantly decreases pulmonary/renal vascular leakage and inflammation in a murine model of LPS-mediated acute lung injury and may represent a novel therapeutic strategy for vascular barrier dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology.

              The "sphingosin" backbone of sphingolipids was so named by J. L. W. Thudichum in 1884 for its enigmatic ("Sphinx-like") properties. Although still an elusive class of lipids, research on the involvement of sphingolipids in the signal transduction pathways that mediate cell growth, differentiation, multiple cell functions, and cell death has been rapidly expanding our understanding of these compounds. In addition to the newly discovered role of ceramide as an intracellular second messenger for tumor necrosis factor-alpha, IL-1beta, and other cytokines, sphingosine, sphingosine-1-phosphate, and other sphingolipid metabolites have recently been demonstrated to modulate cellular calcium homeostasis and cell proliferation. Perturbation of sphingolipid metabolism using synthetic and naturally occurring inhibitors of key enzymes of the biosynthetic pathways is aiding the characterization of these processes; for examples, inhibition of cerebroside synthase has indicated a role for ceramide in cellular stress responses including heat shock, and inhibition of ceramide synthase (by fumonisins) has revealed the role of disruption of sphingolipid metabolism in several animal diseases. Fumonisins are currently the focus of a FDA long-term tumor study. This review summarizes recent research on (i) the role of sphingolipids as important components of the diet, (ii) the role of sphingoid base metabolites and the ceramide cycle in expression of genes regulating cell growth, differentiation, and apoptosis, (iii) the use of cerebroside synthase inhibitors as tools for understanding the role of sphingolipids as mediators of cell cycle progression, renal disease, and stress responses, and (iv) the involvement of disrupted sphingolipid metabolism in animal disease and cellular deregulation associated with exposure to inhibitors of ceramide synthase and serine palmitoyltransferase, key enzymes in de novo sphingolipid biosynthesis. These findings illustrate how an understanding of the function of sphingolipids can help solve questions in toxicology and this is undoubtedly only the beginning of this story.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                S. Karger AG
                0250-8095
                1421-9670
                2010
                April 2010
                16 March 2010
                : 31
                : 4
                : 353-362
                Affiliations
                aDepartment of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, N.Y., USA; bMolecular Signalling Laboratory, Centre for Cancer Biology, SA Pathology, Adelaide, S.A., Australia
                Article
                298339 PMC2859229 Am J Nephrol 2010;31:353–362
                10.1159/000298339
                PMC2859229
                20234131
                df9562c3-5e1b-4867-9a50-284434fb4da7
                © 2010 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 17 December 2009
                : 03 February 2010
                Page count
                Figures: 7, Tables: 1, References: 41, Pages: 10
                Categories
                Original Report: Laboratory Investigation

                Cardiovascular Medicine,Nephrology
                Anesthetics, volatile,Proximal tubule,Kidney injury, acute,Renal failure, acute

                Comments

                Comment on this article