79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In vivo transmission studies of ‘ Candidatus Mycoplasma turicensis’ in the domestic cat

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The natural transmission routes of the three feline haemotropic mycoplasmas – Mycoplasma haemofelis, ‘ Candidatus Mycoplasma haemominutum’, and ‘ Candidatus Mycoplasma turicensis’ (CMt) – are largely unknown. Since CMt has been detected in the saliva of infected cats using PCR, we hypothesised that direct transmission via social or aggressive contact may occur. The aim of this study was to evaluate this transmission route. CMt-positive saliva and blood samples were obtained from three prednisolone-treated specific pathogen-free (SPF) cats that were infected intraperitoneally with CMt. Five SPF cats were inoculated with CMt-positive saliva or blood subcutaneously to mimic cat bites, and five cats were inoculated orally with blood or oronasally with saliva to mimic social contact. Blood samples were monitored for CMt infection using quantitative real-time PCR and for seroconversion using a novel western blot assay. Neither oronasal nor subcutaneous inoculation with CMt-positive saliva led to CMt infection in the recipient cats, as determined by PCR, independent of prior prednisolone treatment. However, when blood containing the same CMt dose was given subcutaneously, 4 of the 5 cats became PCR-positive, while none of the 5 cats inoculated orally with up to 500 μL of CMt-positive blood became PCR-positive. Subsequently, the latter cats were successfully subcutaneously infected with blood. All 13 CMt-exposed cats seroconverted. In conclusion, CMt transmission by social contact seems less likely than transmission by aggressive interaction. The latter transmission may occur if the recipient cat is exposed to blood from an infected cat.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          Prevalence, risk factor analysis, and follow-up of infections caused by three feline hemoplasma species in cats in Switzerland.

          Recently, a third novel feline hemotropic Mycoplasma sp. (aka hemoplasma), "Candidatus Mycoplasma turicensis," in a cat with hemolytic anemia has been described. This is the first study to investigate the prevalence, clinical manifestations, and risk factors for all three feline hemoplasma infections in a sample of 713 healthy and ill Swiss cats using newly designed quantitative real-time PCR assays. "Candidatus Mycoplasma haemominutum" infection was detected in 7.0% and 8.7% and Mycoplasma haemofelis was detected in 2.3% and 0.2% of healthy and ill cats, respectively. "Candidatus Mycoplasma turicensis" was only detected in six ill cats (1.1%); three of them were coinfected with "Candidatus Mycoplasma haemominutum." The 16S rRNA gene sequence of 12 Swiss hemoplasma isolates revealed >98% similarity with previously published sequences. Hemoplasma infection was associated with male gender, outdoor access, and old age but not with retrovirus infection and was more frequent in certain areas of Switzerland. "Candidatus Mycoplasma haemominutum"-infected ill cats were more frequently diagnosed with renal insufficiency and exhibited higher renal blood parameters than uninfected ill cats. No correlation between hemoplasma load and packed cell volume was found, although several hemoplasma-infected cats, some coinfected with feline immunodeficiency virus or feline leukemia virus, showed hemolytic anemia. High M. haemofelis loads (>9 x 10(5) copies/ml blood) seem to lead to anemia in acutely infected cats but not in recovered long-term carriers. A repeated evaluation of 17 cats documented that the infection was acquired in one case by blood transfusion and that there were important differences among species regarding whether or not antibiotic administration led to the resolution of bacteremia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitation of feline leukaemia virus viral and proviral loads by TaqMan real-time polymerase chain reaction.

            Feline leukaemia virus (FeLV) infection in cats is not only of veterinary importance but also a well-acknowledged animal model for studying the pathogenesis of retroviral disease. After virus exposure, different courses and outcomes of FeLV infection may prevail; they have been associated with cellular and humoral immune responses and the FeLV proviral load in peripheral blood. We hypothesized that the plasma viral RNA load might be an additional relevant indicator for the infection outcome. To quantify these loads, a real-time reverse transcriptase (RT) polymerase chain reaction (PCR) assay was developed. The assay amplifies FeLV-A, -B, and -C as some naturally infected cats could not be identified with a FeLV-A-based assay previously. The assay was applied to determine plasma FeLV RNA loads in cats infected both naturally and experimentally with FeLV. In addition, an improved real-time PCR assay for quantitation of FeLV proviral loads is described. The assays developed were more sensitive than ELISA and virus isolation in the early phase of infection. In addition, PCR allows the identification of provirus carriers that have overcome antigenaemia. Thus, for most effective detection of FeLV exposure and characterization of the infection in a cat, PCR assays are recommended as diagnostic tools.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification, molecular characterization, and experimental transmission of a new hemoplasma isolate from a cat with hemolytic anemia in Switzerland.

              Recently, there has been a growing interest in hemotropic mycoplasmal species (also known as the hemoplasmas), the causative agents of infectious anemia in several mammalian species. In felids, two different hemoplasma species have been recognized: Mycoplasma haemofelis (formerly Haemobartonella felis) and "Candidatus Mycoplasma haemominutum." Recently developed molecular methods have allowed sensitive and specific identification and quantification of these agents in feline blood samples. In applying these methods to an epidemiological study surveying the Swiss pet cat population for hemoplasma infection, we discovered a third novel and unique feline hemoplasma isolate in a blood sample collected from a cat that had exhibited clinical signs of severe hemolytic anemia. This agent was readily transmitted via intravenous inoculation to two specific-pathogen-free cats. One of these cats was immunocompromised by the administration of methylprednisolone acetate prior to inoculation, and this cat developed severe anemia. The other immunocompetent cat showed a moderate decrease in packed cell volume. Additionally, an increase in red blood cell osmotic fragility was observed. Sequencing of the entire 16S rRNA gene of the new hemoplasma isolate and phylogenetic analysis showed that the isolate was most closely related to two rodent hemotropic mycoplasmal species, M. coccoides and M. haemomuris. A quantitative real-time PCR assay specific for this newly discovered agent was developed, which will be a prerequisite for the diagnosis of infections with the new hemoplasma isolate.
                Bookmark

                Author and article information

                Journal
                Vet Res
                vetres
                Veterinary Research
                EDP Sciences
                0928-4249
                1297-9716
                Sep-Oct 2009
                16 May 2009
                : 40
                : 5 ( publisher-idID: vetres/2009/05 )
                Affiliations
                [1 ]Clinical Laboratory, Vetsuisse Faculty, University of Zurich , Switzerland
                [2 ]Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich , Switzerland
                [3 ]Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich , Switzerland
                [4 ]School of Clinical Veterinary Science, University of Bristol, Langford House , Langford, Bristol United Kingdom
                Author notes
                [* ]Corresponding author: rhofmann@ 123456vetclinics.uzh.ch
                Article
                10.1051/vetres/2009028 v09191
                10.1051/vetres/2009028
                2701178
                19505421
                © INRA, EDP Sciences, 2009
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 43, Pages: 14
                Categories
                Original Article

                Comments

                Comment on this article