146
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spatial organization within a niche as a determinant of stem cell fate

      research-article
      , ,
      Nature
      Stem Cells, Niche, Hair Follicle, Regeneration, Intravital Microscopy

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Stem cell niches in mammalian tissues are often heterogeneous and compartmentalized, however whether distinct niche locations determine different stem cell fates remains unclear. To test this hypothesis, we utilized the mouse hair follicle niche and devised a novel approach by combining intravital microscopy with genetic lineage tracing to re-visit the same stem cell lineages, from their exact place of origin, throughout regeneration in live mice. Using this method, we show directly that the position of a stem cell within the hair follicle niche can predict whether it is likely to remain uncommitted, generate precursors or commit to a differentiated fate. Furthermore, using laser ablation we demonstrate that hair follicle stem cells are dispensable for regeneration and that epithelial cells, which do not normally participate in hair growth, re-populate the lost stem cell compartment and sustain hair regeneration. This study provides a general paradigm for niche-induced fate determination in adult tissues.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The stem-cell niche as an entity of action.

          Stem-cell populations are established in 'niches'--specific anatomic locations that regulate how they participate in tissue generation, maintenance and repair. The niche saves stem cells from depletion, while protecting the host from over-exuberant stem-cell proliferation. It constitutes a basic unit of tissue physiology, integrating signals that mediate the balanced response of stem cells to the needs of organisms. Yet the niche may also induce pathologies by imposing aberrant function on stem cells or other targets. The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues, and for the ultimate design of stem-cell therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis.

            Inconsistent with the view that hair follicle stem cells reside in the matrix area of the hair bulb, we found that label-retaining cells exist exclusively in the bulge area of the mouse hair follicle. The bulge consists of a subpopulation of outer root sheath cells located in the midportion of the follicle at the arrector pili muscle attachment site. Keratinocytes in the bulge area are relatively undifferentiated ultrastructurally. They are normally slow cycling, but can be stimulated to proliferate transiently by TPA. Located in a well-protected and nourished environment, these cells mark the lower end of the "permanent" portion of the follicle. Our findings, plus a reevaluation of the literature, suggest that follicular stem cells reside in the bulge region, instead of the lower bulb. This new view provides insights into hair cycle control and the possible involvement of hair follicle stem cells in skin carcinogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bmi1 is expressed in vivo in intestinal stem cells.

              Bmi1 plays an essential part in the self-renewal of hematopoietic and neural stem cells. To investigate its role in other adult stem cell populations, we generated a mouse expressing a tamoxifen-inducible Cre from the Bmi1 locus. We found that Bmi1 is expressed in discrete cells located near the bottom of crypts in the small intestine, predominantly four cells above the base of the crypt (+4 position). Over time, these cells proliferate, expand, self-renew and give rise to all the differentiated cell lineages of the small intestine epithelium. The induction of a stable form of beta-catenin in these cells was sufficient to rapidly generate adenomas. Moreover, ablation of Bmi1(+) cells using a Rosa26 conditional allele, expressing diphtheria toxin, led to crypt loss. These experiments identify Bmi1 as an intestinal stem cell marker in vivo. Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                3 January 2014
                06 October 2013
                24 October 2013
                24 April 2014
                : 502
                : 7472
                : 513-518
                Affiliations
                Department of Genetics, Department of Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, USA
                Author notes
                [* ]To whom correspondence should be addressed: Valentina Greco, Tel: 203 737 5241, Fax: 203 785 4415, valentina.greco@ 123456yale.edu
                Article
                NIHMS518697
                10.1038/nature12602
                3895444
                24097351
                dfaa4f0c-f8bf-4916-9332-f0e7c6c22e10

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS
                Award ID: R01 AR063663 || AR
                Categories
                Article

                Uncategorized
                stem cells,niche,hair follicle,regeneration,intravital microscopy
                Uncategorized
                stem cells, niche, hair follicle, regeneration, intravital microscopy

                Comments

                Comment on this article