Blog
About

152
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man

      , , , , ,

      Diabetologia

      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 16

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative estimation of insulin sensitivity.

          We have evaluated the feasibility of using a mathematical model of glucose disappearance to estimate insulin sensitivity. Glucose was injected into conscious dogs at 100, 200, or 300 mg/kg. The measured time course of insulin was regarded as the "input," and the falling glucose concentration as the "output" of the physiological system storing and using glucose. Seven mathematical models of glucose uptake were compared to identify the representation most capable of simulating glucose disappearance. One specific nonlinear model was superior in that it 1) predicted the time course of glucose after glucose injection, 2) had four parameters that could be precisely estimated, and 3) described individual experiments with similar parameter values. Insulin sensitivity index (SI), defined as the dependence of fractional glucose disappearance on plasma insulin, was the ratio of two parameters of the chosen model and could be estimated with good reproducibility from the 300 mg/kg injection experiments (SI = 7.00 X 10(-4) +/- 24% (coefficient of variation) min-1/(microU/ml) (n = 8)). Thus, from a single glucose injection it is possible to obtain a quantitative index of insulin sensitivity that may have clinical applicability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations.

            The liver and beta cells function in a negative feedback loop, which appears to have a predominant role in regulating both the basal plasma glucose and insulin concentrations. The degree of basal hyperglycemia in diabetes probably provides a bioassay of both the effect of a reduction in insulin secretory capacity and the degree of insulin resistance. A mathematic model of the interaction of insulin deficiency and insulin resistance has been constructed, based on the known response characteristics of the beta cells to glucose, and of plasma glucose and insulin control of hepatic and peripherpal glucose flux. The degree to which beta cell deficiency increases basal plasma glucose reflects the hyperbolic shape of the normal insulin secretory response to different glucose concentrations. The height of basal plasma insulin is a function of the degree of insulin resistance. From the basal plasma insulin and glucose concentrations, the model provides an estimate of the degree to which both beta cell deficiency and insulin resistance contribute to diabetes. The predictions arising from the model are in accord with experimental data in man and in animals. In normal-weight diabetics who do not have increased insulin resistance, the model predicts that more than 85% of beta cell function has to be lost for the basal plasma glucose to rise to 6 mmol/liter, but a further 5%--10% loss increases the basal plasma glucose to over 10 mmol/liter. In a third of a consecutive series of 65 newly presenting, uncomplicated diabetics, both normal weight and obese, the analysis from the model suggested that insulin resistance, rather than beta cell deficit, was the predominant feature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of pulsatile insulin secretion in man.

              Plasma insulin and glucose concentrations were examined in man in a basal state from central venous samples taken at 1-min intervals for up to 2.5 h. Normal subjects have insulin oscillations of mean period 14 min (significant autocorrelation, p less than 0.0001) with changes in concentration of 40% over 7 min. The pulsation frequency was stable through cholinergic, endorphin, alpha-adrenergic or beta-adrenergic blockade, or small perturbations with glucose or insulin. Stimulation of insulin secretion by intravenous glucose, tolbutamide or sodium salicylate increased the amplitude of the insulin oscillations while the frequency remained stable. Patients with a truncal vagotomy or after Whipple's operation had longer-term oscillations of 33 and 37 min periodicity (autocorrelation: p less than 0.0001), with insulin-associated glucose swings four times larger than those of normal subjects. Type 2 (non-insulin-dependent) diabetic patients had a similarly increased insulin-associated glucose swing of six times that seen in normal subjects. The hypothesis is proposed that the 14-min cycle of insulin production is controlled by a 'pacemaker' which assists glucose homeostasis. The longer 33-37-min oscillations, seen in those with denervation, may arise from a limit-cycle of the feedback loop between insulin from the B cells and glucose from the liver. The vagus may provide hierarchical control of insulin release.
                Bookmark

                Author and article information

                Journal
                Diabetologia
                Diabetologia
                Springer Nature America, Inc
                0012-186X
                1432-0428
                July 1985
                July 1985
                : 28
                : 7
                : 412-419
                10.1007/BF00280883
                © 1985
                Product

                Comments

                Comment on this article