Blog
About

40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacological Blockade of TRPM8 Ion Channels Alters Cold and Cold Pain Responses in Mice

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          TRPM8 ( Transient Receptor Potential Melastatin-8) is a cold- and menthol-gated ion channel necessary for the detection of cold temperatures in the mammalian peripheral nervous system. Functioning TRPM8 channels are required for behavioral responses to innocuous cool, noxious cold, injury-evoked cold hypersensitivity, cooling-mediated analgesia, and thermoregulation. Because of these various roles, the ability to pharmacologically manipulate TRPM8 function to alter the excitability of cold-sensing neurons may have broad impact clinically. Here we examined a novel compound, PBMC (1-phenylethyl-4-(benzyloxy)-3-methoxybenzyl(2-aminoethyl)carbamate) which robustly and selectively inhibited TRPM8 channels in vitro with sub-nanomolar affinity, as determined by calcium microfluorimetry and electrophysiology. The actions of PBMC were selective for TRPM8, with no functional effects observed for the sensory ion channels TRPV1 and TRPA1. PBMC altered TRPM8 gating by shifting the voltage-dependence of menthol-evoked currents towards positive membrane potentials. When administered systemically to mice, PBMC treatment produced a dose-dependent hypothermia in wildtype animals while TRPM8-knockout mice remained unaffected. This hypothermic response was reduced at lower doses, whereas responses to evaporative cooling were still significantly attenuated. Lastly, systemic PBMC also diminished cold hypersensitivity in inflammatory and nerve-injury pain models, but was ineffective against oxaliplatin-induced neuropathic cold hypersensitivity, despite our findings that TRPM8 is required for the cold-related symptoms of this pathology. Thus PBMC is an attractive compound that serves as a template for the formulation of highly specific and potent TRPM8 antagonists that will have utility both in vitro and in vivo.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: not found

          The capsaicin receptor: a heat-activated ion channel in the pain pathway.

          Capsaicin, the main pungent ingredient in 'hot' chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system. We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons. This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels. The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a cold receptor reveals a general role for TRP channels in thermosensation.

            The cellular and molecular mechanisms that enable us to sense cold are not well understood. Insights into this process have come from the use of pharmacological agents, such as menthol, that elicit a cooling sensation. Here we have characterized and cloned a menthol receptor from trigeminal sensory neurons that is also activated by thermal stimuli in the cool to cold range. This cold- and menthol-sensitive receptor, CMR1, is a member of the TRP family of excitatory ion channels, and we propose that it functions as a transducer of cold stimuli in the somatosensory system. These findings, together with our previous identification of the heat-sensitive channels VR1 and VRL-1, demonstrate that TRP channels detect temperatures over a wide range and are the principal sensors of thermal stimuli in the mammalian peripheral nervous system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1.

              Wasabi, horseradish and mustard owe their pungency to isothiocyanate compounds. Topical application of mustard oil (allyl isothiocyanate) to the skin activates underlying sensory nerve endings, thereby producing pain, inflammation and robust hypersensitivity to thermal and mechanical stimuli. Despite their widespread use in both the kitchen and the laboratory, the molecular mechanism through which isothiocyanates mediate their effects remains unknown. Here we show that mustard oil depolarizes a subpopulation of primary sensory neurons that are also activated by capsaicin, the pungent ingredient in chilli peppers, and by Delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana. Both allyl isothiocyanate and THC mediate their excitatory effects by activating ANKTM1, a member of the TRP ion channel family recently implicated in the detection of noxious cold. These findings identify a cellular and molecular target for the pungent action of mustard oils and support an emerging role for TRP channels as ionotropic cannabinoid receptors.
                Bookmark

                Author and article information

                Affiliations
                [1 ]Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
                [2 ]Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
                [3 ]Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
                Georgia State University, United States of America
                Author notes

                Conceived and designed the experiments: WMK RLD D. McKemy. Performed the experiments: WMK RLD RP D. McCoy. Analyzed the data: WMK RLD RP D. McKemy. Contributed reagents/materials/analysis tools: WMK RLD RP D. McCoy D. McKemy. Wrote the paper: WMK RLD RP D. McKemy.

                [¤]

                Current address: Biology Department, College of Idaho, Caldwell, Idaho, United States of America

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                30 September 2011
                : 6
                : 9
                3184174
                21984952
                PONE-D-11-14193
                10.1371/journal.pone.0025894
                (Editor)
                Knowlton et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Counts
                Pages: 13
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Sensory Physiology
                Computational Biology
                Computational Neuroscience
                Sensory Systems
                Immunology
                Immunity
                Inflammation
                Microbiology
                Immunity
                Inflammation
                Neuroscience
                Cellular Neuroscience
                Ion Channels
                Cognitive Neuroscience
                Pain
                Computational Neuroscience
                Sensory Systems
                Neurophysiology
                Peripheral Nervous System
                Sensory Perception
                Sensory Systems
                Medicine
                Anatomy and Physiology
                Neurological System
                Sensory Physiology
                Sensory Systems
                Clinical Immunology
                Immunity
                Inflammation
                Mental Health
                Psychology
                Sensory Perception
                Social and Behavioral Sciences
                Psychology
                Sensory Perception

                Uncategorized

                Comments

                Comment on this article