3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel piperazine derivative that targets hepatitis B surface antigen effectively inhibits tenofovir resistant hepatitis B virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic hepatitis B virus (HBV) infection is a global problem. The loss of hepatitis B surface antigen (HBsAg) in serum is a therapeutic end point. Prolonged therapy with nucleoside/nucleotide analogues targeting the HBV-polymerase may lead to resistance and rarely results in the loss of HBsAg. Therefore, inhibitors targeting HBsAg may have potential therapeutic applications. Here, we used computational virtual screening, docking, and molecular dynamics simulations to identify potential small molecule inhibitors against HBsAg. After screening a million molecules from ZINC database, we identified small molecules with potential anti-HBV activity. Subsequently, cytotoxicity profiles and anti-HBV activities of these small molecules were tested using a widely used cell culture model for HBV. We identified a small molecule (ZINC20451377) which binds to HBsAg with high affinity, with a KD of 65.3 nM, as determined by Surface Plasmon Resonance spectroscopy. Notably, the small molecule inhibited HBsAg production and hepatitis B virion secretion (10 μM) at low micromolar concentrations and was also efficacious against a HBV quadruple mutant (CYEI mutant) resistant to tenofovir. We conclude that this small molecule exhibits strong anti-HBV properties and merits further testing.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Basic local alignment search tool.

          A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.

            We describe the testing and release of AutoDock4 and the accompanying graphical user interface AutoDockTools. AutoDock4 incorporates limited flexibility in the receptor. Several tests are reported here, including a redocking experiment with 188 diverse ligand-protein complexes and a cross-docking experiment using flexible sidechains in 87 HIV protease complexes. We also report its utility in analysis of covalently bound ligands, using both a grid-based docking method and a modification of the flexible sidechain technique. (c) 2009 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Double-slit photoelectron interference in strong-field ionization of the neon dimer

              Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.
                Bookmark

                Author and article information

                Contributors
                vperumal@bioschool.iitd.ac.in
                bjayaram@chemistry.iitd.ac.in
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                3 June 2021
                3 June 2021
                2021
                : 11
                : 11723
                Affiliations
                [1 ]GRID grid.417967.a, ISNI 0000 0004 0558 8755, Kusuma School of Biological Sciences, , Indian Institute of Technology, ; Delhi, New Delhi India
                [2 ]GRID grid.417967.a, ISNI 0000 0004 0558 8755, Department of Chemistry, , Indian Institute of Technology, ; Delhi, New Delhi India
                [3 ]GRID grid.417967.a, ISNI 0000 0004 0558 8755, Supercomputing Facility for Bioinformatics and Computational Biology, , Indian Institute of Technology, ; Delhi, New Delhi India
                [4 ]GRID grid.417967.a, ISNI 0000 0004 0558 8755, Department of Chemical Engineering, , Indian Institute of Technology, ; Delhi, New Delhi India
                Article
                91196
                10.1038/s41598-021-91196-1
                8175705
                34083665
                dfc095c1-07eb-42c1-ab89-39da74ee2e1a
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 March 2021
                : 19 May 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                hepatitis b virus,antiviral agents,high-throughput screening,virtual drug screening,target identification,target validation,small molecules

                Comments

                Comment on this article