34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most marine mammal­ strandings coincident with naval sonar exercises have involved Cuvier's beaked whales ( Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89–127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78–106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Tri-Axial Dynamic Acceleration as a Proxy for Animal Energy Expenditure; Should We Be Summing Values or Calculating the Vector?

          Dynamic body acceleration (DBA) has been used as a proxy for energy expenditure in logger-equipped animals, with researchers summing the acceleration (overall dynamic body acceleration - ODBA) from the three orthogonal axes of devices. The vector of the dynamic body acceleration (VeDBA) may be a better proxy so this study compared ODBA and VeDBA as proxies for rate of oxygen consumption using humans and 6 other species. Twenty-one humans on a treadmill ran at different speeds while equipped with two loggers, one in a straight orientation and the other skewed, while rate of oxygen consumption ( ) was recorded. Similar data were obtained from animals but using only one (straight) logger. In humans, both ODBA and VeDBA were good proxies for with all r2 values exceeding 0.88, although ODBA accounted for slightly but significantly more of the variation in than did VeDBA (P<0.03). There were no significant differences between ODBA and VeDBA in terms of the change in estimated by the acceleration data in a simulated situation of the logger being mounted straight but then becoming skewed (P = 0.744). In the animal study, ODBA and VeDBA were again good proxies for with all r2 values exceeding 0.70 although, again, ODBA accounted for slightly, but significantly, more of the variation in than did VeDBA (P<0.03). The simultaneous contraction of muscles, inserted variously for limb stability, may produce muscle oxygen use that at least partially equates with summing components to derive DBA. Thus, a vectorial summation to derive DBA cannot be assumed to be the more ‘correct’ calculation. However, although within the limitations of our simple study, ODBA appears a marginally better proxy for . In the unusual situation where researchers are unable to guarantee at least reasonably consistent device orientation, they should use VeDBA as a proxy for .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extreme diving of beaked whales.

            Sound-and-orientation recording tags (DTAGs) were used to study 10 beaked whales of two poorly known species, Ziphius cavirostris (Zc) and Mesoplodon densirostris (Md). Acoustic behaviour in the deep foraging dives performed by both species (Zc: 28 dives by seven individuals; Md: 16 dives by three individuals) shows that they hunt by echolocation in deep water between 222 and 1885 m, attempting to capture about 30 prey/dive. This food source is so deep that the average foraging dives were deeper (Zc: 1070 m; Md: 835 m) and longer (Zc: 58 min; Md: 47 min) than reported for any other air-breathing species. A series of shallower dives, containing no indications of foraging, followed most deep foraging dives. The average interval between deep foraging dives was 63 min for Zc and 92 min for Md. This long an interval may be required for beaked whales to recover from an oxygen debt accrued in the deep foraging dives, which last about twice the estimated aerobic dive limit. Recent reports of gas emboli in beaked whales stranded during naval sonar exercises have led to the hypothesis that their deep-diving may make them especially vulnerable to decompression. Using current models of breath-hold diving, we infer that their natural diving behaviour is inconsistent with known problems of acute nitrogen supersaturation and embolism. If the assumptions of these models are correct for beaked whales, then possible decompression problems are more likely to result from an abnormal behavioural response to sonar.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Beaked Whales Respond to Simulated and Actual Navy Sonar

              Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.
                Bookmark

                Author and article information

                Journal
                Biol Lett
                Biol. Lett
                RSBL
                roybiolett
                Biology Letters
                The Royal Society
                1744-9561
                1744-957X
                23 August 2013
                23 August 2013
                : 9
                : 4
                : 20130223
                Affiliations
                [1 ]Centre for Research into Ecological and Environmental Modelling, Scottish Oceans Institute, University of St Andrews , St Andrews, UK
                [2 ]School of Biology and Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews , St Andrews, UK
                [3 ]Southall Environmental Associates Inc. , Aptos, CA, USA
                [4 ]Long Marine Laboratory, University of California , Santa Cruz, CA, USA
                [5 ]Nicholas School of the Environment, Duke University , Beaufort, NC, USA
                [6 ]Cascadia Research Collective , Olympia, WA, USA
                [7 ]Centre for Maritime Research and Experimentation (STO-CMRE), NATO Science and Technology Organisation , La Spezia, Italy
                [8 ]Department of Oceanography, Naval Postgraduate School , Monterey, CA, USA
                [9 ]Naval Undersea Warfare Center , Newport, RI, USA
                Author notes
                Article
                rsbl20130223
                10.1098/rsbl.2013.0223
                3730631
                23825085
                dfc8a347-9feb-42a8-9a40-45888cb5dfcb

                © 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                : 7 March 2013
                : 14 June 2013
                Categories
                1001
                14
                60
                69
                Conservation Biology
                Custom metadata
                August 23, 2013

                Life sciences
                acoustic disturbance,avoidance response,anthropogenic noise,mid-frequency active sonar,military,ziphius cavirostris

                Comments

                Comment on this article