26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Red Deer Antler Extract Accelerates Hair Growth by Stimulating Expression of Insulin-like Growth Factor I in Full-thickness Wound Healing Rat Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In order to investigate and evaluate the effects of red deer antlers on hair growth in the full-thickness wound healing model, Sprague-Dawley rats were given incision wounds through the full thickness of their dorsal skin and deer antler was applied for 40 days. At specified intervals thereafter (4, 8, 16, 32 and 40 days), the animals were sacrificed and the wound site skins were excised, processed, and sectioned. At post-injury days 16, 32 and 40, longer and more active new hair appeared around the healing wound of antler-treated skin. Histological studies showed that the antler extract markedly increases the depth, size, and number of hair follicles. Expression of IGF-I (insulin-like growth factor) mRNA was detected by RT-PCR and real time RT-PCR. The result showed that the expression of IGF-I (days 16, 32, and 40) was obviously up-regulated in antler-treated skins compared to control skins. Similar results were seen in the ELISA analysis to quantify the IGF-I expression. These results support the notion that wound healing can cause hair growth by enhancing the expression of IGF-I. Deer antler extract appears to have the potential to promote hair growth and could be used in hair growth products.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Wnt signaling: a common theme in animal development.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of Wnt signaling in development.

            Wnt genes encode a large family of secreted, cysteine-rich proteins that play key roles as intercellular signaling molecules in development. Genetic studies in Drosophila and Caenorhabditis elegans, ectopic gene expression in Xenopus, and gene knockouts in the mouse have demonstrated the involvement of Wnts in processes as diverse as segmentation, CNS patterning, and control of asymmetric cell divisions. The transduction of Wnt signals between cells proceeds in a complex series of events including post-translational modification and secretion of Wnts, binding to transmembrane receptors, activation of cytoplasmic effectors, and, finally, transcriptional regulation of target genes. Over the past two years our understanding of Wnt signaling has been substantially improved by the identification of Frizzled proteins as cell surface receptors for Wnts and by the finding that beta-catenin, a component downstream of the receptor, can translocate to the nucleus and function as a transcriptional activator. Here we review recent data that have started to unravel the mechanisms of Wnt signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The secret life of the hair follicle.

              M. Hardy (1992)
              The mammalian hair follicle is a treasure waiting to be discovered by more molecular geneticists. How can a tiny cluster of apparently uniform epithelial cells, adjacent to a tiny cluster of uniform mesenchymal cells, give rise to five or six concentric cylinders, each of which is composed of cells of a distinctive type that synthesize their own distinctive set of proteins? There is now evidence that several growth factors, cell adhesion molecules and other molecules play important roles in the regulation of this minute organ.
                Bookmark

                Author and article information

                Journal
                Asian-Australas J Anim Sci
                Asian-australas. J. Anim. Sci
                Asian-Australasian Journal of Animal Sciences
                Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
                1011-2367
                1976-5517
                May 2012
                01 May 2012
                : 25
                : 5
                : 708-716
                Affiliations
                [1 ]Colloge of life science, Huzhou University, Huzhou, Zhejiang 31300, China.
                Author notes
                [* ]Corresponding Author: Changkeun Sung. Tel: +82-42-821-6722, Fax: +82-42-822-2287, E-mail: kchsung@ 123456cnu.ac.kr

                Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, Daejeon 305-764, Korea

                [a]

                ZhiHong Yang and Author LiJuan Gu contributed to this work equally.

                Article
                ajas-25-5-708-16
                10.5713/ajas.2011.11246
                4093112
                dfda3e88-682f-4bd0-9745-6058deceb6d1
                Copyright © 2012 by Asian-Australasian Journal of Animal Sciences

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 July 2011
                : 05 December 2011
                : 16 November 2011
                Categories
                Article

                hair growth,wound healing,growth factors,igf-i,wingless-type mmtv integration site family (wnt)

                Comments

                Comment on this article