15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sine Oculis Homeobox Homolog 1 Regulates Mitochondrial Apoptosis Pathway Via Caspase-7 In Gastric Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sine oculis homeobox homolog 1 (Six1) is crucial in normal organ development. Recently, Six1 is reported to display aberrant expression in various cancers and plays important roles in cancer development. However, the regulatory mechanism of Six1 in gastric cancer is largely unknown. In the current study, we found that Six1 was increased in gastric cancer tissues, and its upregulation significantly associated with lymph node metastasis (p=0.042) and poor differentiation (p=0.039). Next, we took advantage of public available microarray data to assess Six1 prognostic value with online K-M Plotter software in gastric cancer, which demonstrated that patients with higher Six1 expression had shorter survival time (p=0.02). To explore the underlying mechanism of Six1, we silenced its upregulation in gastric cells to detect cellular functions. Our results indicated that knock-down Six1 could decrease colony formation number and rendered cells sensitive to 5- Fluorouracil drug treatment. The flow cytometry analyses showed that Six1 silence could promote apoptosis but had little effect on cell cycle transition. Along this clue, we tested mitochondrial membrane potential with JC-1 assay, which suggested that Six1 inhibition could trigger mitochondrial apoptosis. Our subsequent results revealed that Six1 knock-down could reduce the level of anti-apoptotic protein Bcl-2, and caspase-7 but not caspase-3 was involved to execute the mitochondrial apoptosis pathway. Taken together, we find Six1 has oncogenic role in gastric cancer development, and silenced Six1 expression can promote mitochondrial apoptosis by repressing Bcl-2 and activating executor caspase-7. These findings suggest that Six1 may become a valuable prognostic and therapeutic target in gastric cancer.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Caspases 3 and 7: key mediators of mitochondrial events of apoptosis.

          The current model of apoptosis holds that upstream signals lead to activation of downstream effector caspases. We generated mice deficient in the two effectors, caspase 3 and caspase 7, which died immediately after birth with defects in cardiac development. Fibroblasts lacking both enzymes were highly resistant to both mitochondrial and death receptor-mediated apoptosis, displayed preservation of mitochondrial membrane potential, and had defective nuclear translocation of apoptosis-inducing factor (AIF). Furthermore, the early apoptotic events of Bax translocation and cytochrome c release were also delayed. We conclude that caspases 3 and 7 are critical mediators of mitochondrial events of apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Executioner caspase-3 and caspase-7 are functionally distinct proteases.

            Members of the caspase family of cysteine proteases play central roles in coordinating the stereotypical events that occur during apoptosis. Because the major executioner caspases, caspase-3 and caspase-7, exhibit almost indistinguishable activity toward certain synthetic peptide substrates, this has led to the widespread view that these proteases occupy functionally redundant roles within the cell death machinery. However, the distinct phenotypes of mice deficient in either of these caspases, as well as mice deficient in both, is at odds with this view. These distinct phenotypes could be related to differences in the relative expression levels of caspase-3 and caspase-7 in vivo, or due to more fundamental differences between these proteases in terms of their ability to cleave natural substrates. Here we show that caspase-3 and caspase-7 exhibit differential activity toward multiple substrate proteins, including Bid, XIAP, gelsolin, caspase-6, and cochaperone p23. Caspase-3 was found to be generally more promiscuous than caspase-7 and appears to be the major executioner caspase during the demolition phase of apoptosis. Our observations provide a molecular basis for the different phenotypes seen in mice lacking either caspase and indicate that these proteases occupy nonredundant roles within the cell death machinery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SIX1 promotes tumor lymphangiogenesis by coordinating TGFβ signals that increase expression of VEGF-C.

              Lymphatic vessels are one of the major routes for the dissemination of cancer cells. Malignant tumors release growth factors such as VEGF-C to induce lymphangiogenesis, thereby promoting lymph node metastasis. Here, we report that sine oculis homeobox homolog 1 (SIX1), expressed in tumor cells, can promote tumor lymphangiogenesis and lymph node metastasis by coordinating with TGFβ to increase the expression of VEGF-C. Lymphangiogenesis and lymph node metastasis in cervical cancer were closely correlated with higher expression of SIX1 in tumor cells. By enhancing VEGF-C expression in tumor cells, SIX1 could augment the promoting effect of tumor cells on the migration and tube formation of lymphatic endothelial cells (LEC) in vitro and lymphangiogenesis in vivo. SIX1 enhanced TGFβ-induced activation of SMAD2/3 and coordinated with the SMAD pathway to modulate VEGF-C expression. Together, SIX1 and TGFβ induced much higher expression of VEGF-C in tumor cells than each of them alone. Despite its effect in promoting VEGF-C expression, TGFβ could inhibit lymphangiogenesis by directly inhibiting tube formation by LECs. However, the increased production of VEGF-C not only directly promoted migration and tube formation of LECs but also thwarted the inhibitory effect of TGFβ on LECs. That is, tumor cells that expressed high levels of SIX1 could promote lymphangiogenesis and counteract the negative effects of TGFβ on lymphangiogenesis by increasing the expression of VEGF-C. These findings provide new insights into tumor lymphangiogenesis and the various roles of TGFβ signaling in tumor regulation. Our results also suggest that SIX1/TGFβ might be a potential therapeutic target for preventing lymph node metastasis of tumor.
                Bookmark

                Author and article information

                Journal
                J Cancer
                J Cancer
                jca
                Journal of Cancer
                Ivyspring International Publisher (Sydney )
                1837-9664
                2017
                25 February 2017
                : 8
                : 4
                : 636-645
                Affiliations
                [1 ]Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China;
                [2 ]Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China;
                [3 ]Department of Surgical Intensive Care Unit, Shanghai Tenth People's Hospital, Shanghai, China;
                [4 ]Department of Breast Surgery, Huashan Hospital, Fudan University, Shanghai, China.
                [5 ]General Internal Medicine, Shady Grove Adventist Hospital, Maryland, America.
                Author notes
                ✉ Corresponding authors: Prof. Wenhong Zhang, Tel: (+86) 21 52888023; Fax: (+86) 21 62489015; Email: zhangwenhong@ 123456fudan.edu.cn . Prof. Guangjian Huang, Tel: (+86) 21-52887334; Fax: (+86) 21-52887334; Email address: huangguangjian12@ 123456126.com .

                * These authors contributed equally to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                jcav08p0636
                10.7150/jca.16018
                5370507
                dfda8bfe-964b-4e0a-9b13-f984671ce241
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 30 April 2016
                : 15 October 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                six1,gastric cancer,mitochondrial apoptosis,caspase-7,bcl-2
                Oncology & Radiotherapy
                six1, gastric cancer, mitochondrial apoptosis, caspase-7, bcl-2

                Comments

                Comment on this article