21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A proposal for a new HIV-1 DLS structural model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dimer initiation site/dimer linkage sequence (DIS/DLS) region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play essential roles at various stages of the viral life cycle. Through a novel assay we had recently developed, we reported on the necessary and sufficient region for RNA dimerization in the HIV-1 virion. Using this system, we performed further detailed mapping of the functional base pairs necessary for HIV-1 DLS structure. Interestingly, the study revealed a previously unnoticed stem formation between two distantly positioned regions. Based on this and other findings on functional base pairing in vivo, we propose new 3D models of the HIV-1 DLS which contain a unique pseudoknot-like conformation. Since this pseudoknot-like conformation appears to be thermodynamically stable, forms a foundational skeleton for the DLS and sterically restricts the spontaneous diversification of DLS conformations, its unique shape may contribute to the viral life cycle and potentially serve as a novel target for anti-HIV-1 therapies.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Characteristics of a human cell line transformed by DNA from human adenovirus type 5.

          Human embryonic kidney cells have been transformed by exposing cells to sheared fragments of adenovirus type 5 DNA. The transformed cells (designated 293 cells) exhibited many of the characteristics of transformation including the elaboration of a virus-specific tumour antigen. Analysis of the polypeptides synthesized in the 293 cells by labelling with 35S-methionine and SDS PAGE showed a variable pattern of synthesis, different in a number of respects from that seen in otheruman cells. On labelling the surface of cells by lactoperoxidase catalysed radio-iodination, the absence of a labelled polypeptide analogous to the 250 K (LETS) glycoprotein was noted. Hybridization of labelled cellular RNA with restriction fragments of adenovirus type 5 DNA indicated transcription of a portion of the adenovirus genome at the conventional left hand end.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Architecture and Secondary Structure of an Entire HIV-1 RNA Genome

            Single-stranded RNA viruses encompass broad classes of infectious agents and cause the common cold, cancer, AIDS, and other serious health threats. Viral replication is regulated at many levels, including using conserved genomic RNA structures. Most potential regulatory elements within viral RNA genomes are uncharacterized. Here we report the structure of an entire HIV-1 genome at single nucleotide resolution using SHAPE, a high-throughput RNA analysis technology. The genome encodes protein structure at two levels. In addition to the correspondence between RNA and protein primary sequences, a correlation exists between high levels of RNA structure and sequences that encode inter-domain loops in HIV proteins. This correlation suggests RNA structure modulates ribosome elongation to promote native protein folding. Some simple genome elements previously shown to be important, including the ribosomal gag-pol frameshift stem-loop, are components of larger RNA motifs. We also identify organizational principles for unstructured RNA regions. Highly used splice acceptors lie in unstructured motifs and hypervariable regions are sequestered from flanking genome regions by stable insulator helices. These results emphasize that the HIV-1 genome and, potentially, many coding RNAs are punctuated by numerous previously unrecognized regulatory motifs and that extensive RNA structure may constitute an additional level of the genetic code.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data.

              The classical RNA secondary structure model considers A.U and G.C Watson-Crick as well as G.U wobble base pairs. Here we substitute it for a new one, in which sets of nucleotide cyclic motifs define RNA structures. This model allows us to unify all base pairing energetic contributions in an effective scoring function to tackle the problem of RNA folding. We show how pipelining two computer algorithms based on nucleotide cyclic motifs, MC-Fold and MC-Sym, reproduces a series of experimentally determined RNA three-dimensional structures from the sequence. This demonstrates how crucial the consideration of all base-pairing interactions is in filling the gap between sequence and structure. We use the pipeline to define rules of precursor microRNA folding in double helices, despite the presence of a number of presumed mismatches and bulges, and to propose a new model of the human immunodeficiency virus-1 -1 frame-shifting element.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                June 2012
                June 2012
                10 February 2012
                10 February 2012
                : 40
                : 11
                : 5012-5022
                Affiliations
                1Department of Viral Infections, RIMD, Osaka Univ. 3-1 Yamadaoka, Suita, Osaka 565-0871 and 2Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
                Author notes
                *To whom correspondence should be addressed. Tel: + 81 6 6879 8348; Fax: + 81 6 6879 8347; Email: sakuragi@ 123456biken.osaka-u.ac.jp
                Article
                gks156
                10.1093/nar/gks156
                3367192
                22328732
                dfef118f-0a6e-4222-8336-a8b50619aae5
                © The Author(s) 2012. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 September 2011
                : 26 January 2012
                : 27 January 2012
                Page count
                Pages: 11
                Categories
                RNA

                Genetics
                Genetics

                Comments

                Comment on this article