12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Vasorin: a newly identified regulator of ovarian folliculogenesis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Transcriptional control by the TGF-beta/Smad signaling system.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGF-beta superfamily members and ovarian follicle development.

            In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-beta (TGF-beta ) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, BMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-beta superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-beta and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. In addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary.

              The dimeric glycoprotein anti-Müllerian hormone (AMH) is a member of the transforming growth factor-beta superfamily of growth and differentiation factors. During male fetal sex differentiation, AMH is produced by Sertoli cells and induces degeneration of the Müllerian ducts, which form the anlagen of part of the internal female genital system. In females, AMH is produced by the ovary, but only postnatally. The function of AMH in the ovary is, however, still unknown. Female AMH null mice were reported to be fertile, with normal litter size, but this does not exclude a more subtle function for ovarian AMH. To investigate the function of AMH in the ovary, the complete follicle population was determined in AMH null mice, in mice heterozygous for the AMH null mutation, and in wild-type mice of different ages: 25 days, 4 months, and 13 months. In the present study we found that ovaries of 25-day- and 4-month-old AMH null females, compared to those of wild-type females, contain more preantral and small antral follicles. In addition, in 4- and 13-month-old AMH null females, smaller numbers of primordial follicles were found. Actually, in 13-month-old AMH null females, almost no primordial follicles could be detected, coinciding with a reduced number of preantral and small antral follicles in these females. In almost all females heterozygous for the AMH null mutation the number of follicles fell in between the numbers found in wild-type and AMH null females. In 4-month-old AMH null females serum inhibin levels were higher and FSH levels were lower compared to those in wild-type females. In contrast, inhibin levels were lower in 13-month-old AMH null females, and FSH levels were unchanged compared to those in wild-type females. Furthermore, the weight of the ovaries was twice as high in the 4-month-old AMH null females as in age-matched wild-type females. We conclude that AMH plays an important role in primordial follicle recruitment, such that more primordial follicles are recruited in AMH null mice than in wild-type mice; the mice heterozygous for the AMH null mutation take an in-between position. Consequently, the ovaries of AMH null females and those of females heterozygous for the AMH null mutation will show a relatively early depletion of their stock of primordial follicles. The female AMH null mouse may thus provide a useful model to study regulation of primordial follicle recruitment and the relation between follicular dynamics and ovarian aging.
                Bookmark

                Author and article information

                Journal
                The FASEB Journal
                The FASEB Journal
                FASEB
                0892-6638
                1530-6860
                April 2018
                April 2018
                : 32
                : 4
                : 2124-2136
                Affiliations
                [1 ]Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
                Article
                10.1096/fj.201700057RRR
                e000db40-38ea-4e27-a756-50dfbc2f9a91
                © 2018
                History

                Comments

                Comment on this article