36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endogenous Secretory RAGE as a Novel Biomarker for Metabolic Syndrome and Cardiovascular Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Receptor for advanced glycation end-products (RAGE) is known to be involved in both micro- and macro-vascular complications in diabetes. Among numerous truncated forms of RAGE recently described, the C-terminally truncated form of RAGE has received much attention. This form of RAGE, carrying all of the extracellular domains but devoid of the transmembrane and intracytoplasmic domains, is released outside from cells, binds ligands including AGEs, and is capable of neutralizing RAGE signaling on endothelial cells in culture. This form of RAGE is generated as a splice variant and is named endogenous secretory RAGE (esRAGE). Adenoviral overexpression of esRAGE reverses diabetic impairment of vascular dysfunction, suggesting that esRAGE may be an important inhibitor of RAGE signaling in vivo and potentially be useful for prevention of diabetic vascular complications. An ELISA system to measure plasma esRAGE was recently developed, and the pathophysiological roles of esRAGE have begun to be unveiled clinically. Plasma esRAGE levels are decreased in patients with several metabolic diseases including type 1 and type 2 diabetes, metabolic syndrome and hypertension. In cross-sectional analysis, plasma esRAGE levels are inversely correlated with carotid or femoral atherosclerosis. In an observational cohort of patients with end-stage renal disease, cumulative incidence of cardiovascular death was significantly higher in subjects with lower plasma esRAGE levels. These findings suggest that plasma esRAGE may act as a protective factor against and a novel biomarker for the occurrence of metabolic syndrome and cardiovascular diseases.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides.

          S100/calgranulin polypeptides are present at sites of inflammation, likely released by inflammatory cells targeted to such loci by a range of environmental cues. We report here that receptor for AGE (RAGE) is a central cell surface receptor for EN-RAGE (extracellular newly identified RAGE-binding protein) and related members of the S100/calgranulin superfamily. Interaction of EN-RAGEs with cellular RAGE on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Blockade of EN-RAGE/RAGE quenches delayed-type hypersensitivity and inflammatory colitis in murine models by arresting activation of central signaling pathways and expression of inflammatory gene mediators. These data highlight a novel paradigm in inflammation and identify roles for EN-RAGEs and RAGE in chronic cellular activation and tissue injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases.

            The receptor for advanced glycation end products (RAGE), a multi-ligand member of the immunoglobulin superfamily of cell surface molecules, interacts with distinct molecules implicated in homeostasis, development and inflammation, and certain diseases such as diabetes and Alzheimer's disease. Engagement of RAGE by a ligand triggers activation of key cell signalling pathways, such as p21ras, MAP kinases, NF-kappaB and cdc42/rac, thereby reprogramming cellular properties. RAGE is a central cell surface receptor for amphoterin, a polypeptide linked to outgrowth of cultured cortical neurons derived from developing brain. Indeed, the co-localization of RAGE and amphoterin at the leading edge of advancing neurites indicated their potential contribution to cellular migration, and in pathologies such as tumour invasion. Here we demonstrate that blockade of RAGE-amphoterin decreased growth and metastases of both implanted tumours and tumours developing spontaneously in susceptible mice. Inhibition of the RAGE-amphoterin interaction suppressed activation of p44/p42, p38 and SAP/JNK MAP kinases; molecular effector mechanisms importantly linked to tumour proliferation, invasion and expression of matrix metalloproteinases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy.

              Diabetic nephropathy ensues from events involving earliest changes in the glomeruli and podocytes, followed by accumulation of extracellular matrix in the mesangium. Postulated mechanisms include roles for vascular endothelial growth factor (VEGF), produced by podocytes and contributing to enhanced excretion of urinary albumin and recruitment/activation of inflammatory cells, and transforming growth factor-beta (TGF-beta), elicited largely from mesangial cells and driving production of extracellular matrix. RAGE, a receptor for advanced glycation endproducts (AGEs) and S100/calgranulins, displays enhanced expression in podocytes of genetically diabetic db/db mice by age 13 weeks. RAGE-bearing podocytes express high levels of VEGF by this time, in parallel with enhanced recruitment of mononuclear phagocytes to the glomeruli; events prevented by blockade of RAGE. By age 27 weeks, soluble RAGE-treated db/db mice displayed diminished albuminuria and glomerulosclerosis, and improved renal function. Diabetic homozygous RAGE null mice failed to develop significantly increased mesangial matrix expansion or thickening of the glomerular basement membrane. We propose that activation of RAGE contributes to expression of VEGF and enhanced attraction/activation of inflammatory cells in the diabetic glomerulus, thereby setting the stage for mesangial activation and TGF-beta production; processes which converge to cause albuminuria and glomerulosclerosis.
                Bookmark

                Author and article information

                Journal
                Biomark Insights
                Biomarker Insights
                Biomarker Insights
                Libertas Academica
                1177-2719
                2007
                17 September 2007
                : 2
                : 331-339
                Affiliations
                [1 ] Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
                [2 ] Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
                Author notes
                Correspondence: Hidenori Koyama, M.D., Ph.D. Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan. Tel: +81-6-6645-3806; Fax: +81-6-6645-3808; Email: hidekoyama@ 123456med.osaka-cu.ac.jp
                Article
                bmi-2007-331
                2717812
                19662215
                e00f1a79-13e1-428e-8d3f-9bd59e80202b
                © 2007 by the authors

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                Categories
                Review

                Clinical chemistry
                metabolic syndrome,endogenous secretory rage (esrage),inflammation,atherosclerosis,receptor for advanced glycation end-products (rage),ages,soluble rage (srage)

                Comments

                Comment on this article