1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Downregulation of USP33 inhibits Slit/Robo signaling pathway and is associated with poor patient survival of glioma

      , , ,
      Journal of Neurosurgical Sciences

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Management of glioblastoma: State of the art and future directions

          Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temozolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understanding of the underlying pathogenesis of disease. There is a clear need for better therapeutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microenvironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Primary brain tumours in adults

            Primary CNS tumours refer to a heterogeneous group of tumours arising from cells within the CNS, and can be benign or malignant. Malignant primary brain tumours remain among the most difficult cancers to treat, with a 5 year overall survival no greater than 35%. The most common malignant primary brain tumours in adults are gliomas. Recent advances in molecular biology have improved understanding of glioma pathogenesis, and several clinically significant genetic alterations have been described. A number of these (IDH, 1p/19q codeletion, H3 Lys27Met, and RELA-fusion) are now combined with histology in the revised 2016 WHO classification of CNS tumours. It is likely that understanding such molecular alterations will contribute to the diagnosis, grading, and treatment of brain tumours. This progress in genomics, along with significant advances in cancer and CNS immunology, has defined a new era in neuro-oncology and holds promise for diagntic and therapeutic improvement. The challenge at present is to translate these advances into effective treatments. Current efforts are focused on developing molecular targeted therapies, immunotherapies, gene therapies, and novel drug-delivery technologies. Results with single-agent therapies have been disappointing so far, and combination therapies seem to be required to achieve a broad and durable antitumour response. Biomarker-targeted clinical trials could improve efficiencies of therapeutic development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              WHO 2016 Classification of gliomas.

              Gliomas are the most frequent intrinsic tumours of the central nervous system and encompass two principle subgroups: diffuse gliomas and gliomas showing a more circumscribed growth pattern ('nondiffuse gliomas'). In the revised fourth edition of the WHO Classification of CNS tumours published in 2016, classification of especially diffuse gliomas has fundamentally changed: for the first time, a large subset of these tumours is now defined based on presence/absence of IDH mutation and 1p/19q codeletion. Following this approach, the diagnosis of (anaplastic) oligoastrocytoma can be expected to largely disappear. Furthermore, in the WHO 2016 Classification gliomatosis cerebri is not an entity anymore but is now considered as a growth pattern. The most important changes in the very diverse group of 'nondiffuse' gliomas and neuronal-glial tumours are the introduction of anaplastic pleomorphic xanthoastrocytoma, of diffuse leptomeningeal glioneuronal tumour and of RELA fusion-positive ependymoma as entities. In the last part of this review, after very briefly touching upon classification of neuronal, choroid plexus and pineal region tumours, some practical implications and challenges associated with the WHO 2016 Classification of gliomas are discussed.
                Bookmark

                Author and article information

                Journal
                Journal of Neurosurgical Sciences
                J Neurosurg Sci
                03905616
                18271855
                February 2023
                February 2023
                : 67
                : 1
                Article
                10.23736/S0390-5616.20.04929-2
                e0105e07-312f-4b8f-935c-42e2d4cc3489
                © 2023
                History

                Comments

                Comment on this article