48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Scourge to Cure: Tumour-Selective Viral Pathogenesis as a New Strategy against Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumour mutations corrupt cellular pathways, and accumulate to disrupt, dysregulate, and ultimately avoid mechanisms of cellular control. Yet the very changes that tumour cells undergo to secure their own growth success also render them susceptible to viral infection. Enhanced availability of surface receptors, disruption of antiviral sensing, elevated metabolic activity, disengagement of cell cycle controls, hyperactivation of mitogenic pathways, and apoptotic avoidance all render the malignant cell environment highly supportive to viral replication. The therapeutic use of oncolytic viruses (OVs) with a natural tropism for infecting and subsequently lysing tumour cells is a rapidly progressing area of cancer research. While many OVs exhibit an inherent degree of tropism for transformed cells, this can be further promoted through pharmacological interventions and/or the introduction of viral mutations that generate recombinant oncolytic viruses adapted to successfully replicate only in a malignant cellular environment. Such adaptations that augment OV tumour selectivity are already improving the therapeutic outlook for cancer, and there remains tremendous untapped potential for further innovation.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          ONCOLYTIC VIROTHERAPY

          Oncolytic virotherapy is an emerging treatment modality which uses replication competent viruses to destroy cancers. Advances in the past two years include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, new strategies to maximize the immunotherapeutic potential of oncolytic virotherapy, and clinical confirmation of a critical viremic thereshold for vascular delivery and intratumoral virus replication. The primary clinical milestone was completion of accrual in a phase III trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Challenges for the field are to select ‘winners’ from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders of magnitude higher yields compared to established vaccine manufacturing processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties.

            Herpes simplex virus type-1 (HSV1) in which the neurovirulence factor ICP34.5 is inactivated has been shown to direct tumour-specific cell lysis in several tumour models. Such viruses have also been shown to be safe in Phase I clinical trials by intra-tumoral injection in glioma and melanoma patients. Previous work has used serially passaged laboratory isolates of HSV1 which we hypothesized may be attenuated in their lytic capability in human tumour cells as compared to more recent clinical isolates. To produce ICP34.5 deleted HSV with enhanced oncolytic potential, we tested two clinical isolates. Both showed improved cell killing in all human tumour cell lines tested compared to a laboratory strain (strain 17+). ICP34.5 was then deleted from one of the clinical isolate strains (strain JS1). Enhanced tumour cell killing with ICP34.5 deleted HSV has also been reported by the deletion of ICP47 by the up-regulation of US11 which occurs following this mutation. Thus to further improve oncolytic properties, ICP47 was removed from JS1/ICP34.5-. As ICP47 also functions to block antigen processing in HSV infected cells, this mutation was also anticipated to improve the immune stimulating properties of the virus. Finally, to provide viruses with maximum oncolytic and immune stimulating properties, the gene for human or mouse GM-CSF was inserted into the JS1/34.5-/47- vector backbone. GM-CSF is a potent immune stimulator promoting the differentiation of progenitor cells into dendritic cells and has shown promise in clinical trials when delivered by a number of means. Combination of GM-CSF with oncolytic therapy may be particularly effective as the necrotic cell death accompanying virus replication should serve to effectively release tumour antigens to then induce a GM-CSF-enhanced immune response. This would, in effect, provide an in situ, patient-specific, anti-tumour vaccine. The viruses constructed were tested in vitro in human tumour cell lines and in vivo in mice demonstrating significant anti-tumour effects. These were greatly improved compared to viruses not containing each of the modifications described. In vivo, both injected and non-injected tumours showed significant shrinkage or clearance and mice were protected against re-challenge with tumour cells. The data presented indicate that JS1/ICP34.5-/ICP47-/GM-CSF acts as a powerful oncolytic agent which may be appropriate for the treatment of a number of solid tumour types in man.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents.

              Ideally, an oncolytic virus will replicate preferentially in malignant cells, have the ability to treat disseminated metastases, and ultimately be cleared by the patient. Here we present evidence that the attenuated vesicular stomatitis strains, AV1 and AV2, embody all of these traits. We uncover the mechanism by which these mutants are selectively attenuated in interferon-responsive cells while remaining highly lytic in 80% of human tumor cell lines tested. AV1 and AV2 were tested in a xenograft model of human ovarian cancer and in an immune competent mouse model of metastatic colon cancer. While highly attenuated for growth in normal mice, both AV1 and AV2 effected complete and durable cures in the majority of treated animals when delivered systemically.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2014
                January 2014
                16 January 2014
                : 10
                : 1
                : e1003836
                Affiliations
                [1 ]Centre for Innovative Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
                [2 ]Swift Science Writing, Hamilton, Ontario, Canada
                [3 ]Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
                University of Alberta, Canada
                Author notes

                The authors have declared that no competing interests exist.

                Article
                PPATHOGENS-D-13-01889
                10.1371/journal.ppat.1003836
                3894191
                24453963
                e021a2a3-0cf2-416e-acd0-f1907db563d4
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Pages: 8
                Funding
                CSI is supported by a fellowship from Alberta Innovate Health Solutions. JSD and JCB are supported by the Canadian Institute for Health Research and the Terry Fox Research Institute. JCB is supported by the Ontario Institute for Cancer Research and the Ottawa Regional Cancer Foundation. JSD is supported by the Canadian Cancer Research Society and the Ottawa Hospital Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Review

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article