17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer.

      Hormones & Cancer
      Androgen Receptor Antagonists, administration & dosage, pharmacology, Animals, Antineoplastic Combined Chemotherapy Protocols, therapeutic use, Benzoates, Bicyclo Compounds, Heterocyclic, Cell Line, Tumor, Cell Survival, drug effects, genetics, Dexamethasone, Drug Resistance, Neoplasm, HEK293 Cells, Humans, Immediate-Early Proteins, antagonists & inhibitors, metabolism, Immunoblotting, Male, Metribolone, Mice, Mice, Nude, Microscopy, Fluorescence, Mifepristone, Phenylthiohydantoin, analogs & derivatives, Prostatic Neoplasms, drug therapy, pathology, Protein-Serine-Threonine Kinases, RNA Interference, Receptors, Androgen, Receptors, Glucocorticoid, Reverse Transcriptase Polymerase Chain Reaction, Xenograft Model Antitumor Assays

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite new treatments for castrate-resistant prostate cancer (CRPC), the prognosis of patients with CRPC remains bleak due to acquired resistance to androgen receptor (AR)-directed therapy. The glucocorticoid receptor (GR) and AR share several transcriptional targets, including the anti-apoptotic genes serum and glucocorticoid-regulated kinase 1 (SGK1) and Map kinase phosphatase 1 (MKP1)/dual specificity phosphatase 1 (DUSP1). Because GR expression increases in a subset of primary prostate cancer (PC) following androgen deprivation therapy, we sought to determine whether GR activation can contribute to resistance to AR-directed therapy. We studied CWR-22Rv1 and LAPC4 AR/GR-expressing PC cell lines following treatment with combinations of the androgen R1881, AR antagonist MDV3100, GR agonist dexamethasone, GR antagonists mifepristone and CORT 122928, or the SGK1 inhibitor GSK650394. Cell lines stably expressing GR (NR3C1)-targeted shRNA or ectopic SGK1-Flag were also studied in vivo. GR activation diminished the effects of the AR antagonist MDV3100 on tumor cell viability. In addition, GR activation increased prostate-specific antigen (PSA) secretion and induced SGKI and MKP1/DUSP gene expression. Glucocorticoid-mediated cell viability was diminished by a GR antagonist or by co-treatment with the SGK1 inhibitor GSK650394. In vivo, GR depletion delayed castrate-resistant tumor formation, while SGK1-Flag-overexpressing PC xenografts displayed accelerated castrate-resistant tumor initiation, supporting a role for SGK1 in GR-mediated CRPC progression. We studied several PC models before and following treatment with androgen blockade and found that increased GR expression and activity contributed to tumor-promoting PC cell viability. Increased GR-regulated SGK1 expression appears, at least in part, to mediate enhanced PC cell survival. Therefore, GR and/or SGK1 inhibition may be useful adjuncts to AR blockade for treating CRPC.

          Related collections

          Author and article information

          Comments

          Comment on this article

          Related Documents Log