44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Helminth parasites and immune regulation

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Helminth parasites are complex metazoans that belong to different taxonomic families but that collectively share the capacity to downregulate the host immune response directed toward themselves (parasite-specific immunoregulation). During long-standing chronic infection, these helminths appear able to suppress immune responses to bystander pathogens/antigens and atopic, autoimmune, and metabolic disorders. Helminth-induced immunoregulation occurs through the induction of regulatory T cells or Th2-type cells (or both). However, secreted or excreted parasite metabolites, proteins, or extracellular vesicles (or a combination of these) may also directly induce signaling pathways in host cells. Therefore, the focus of this review will be to highlight recent advances in understanding the immune responses to helminth infection, emphasizing the strategies/molecules and some of the mechanisms used by helminth parasites to modulate the immune response of their hosts.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit.

          Parasitic helminths and allergens induce a type 2 immune response leading to profound changes in tissue physiology, including hyperplasia of mucus-secreting goblet cells and smooth muscle hypercontractility. This response, known as 'weep and sweep', requires interleukin (IL)-13 production by tissue-resident group 2 innate lymphoid cells (ILC2s) and recruited type 2 helper T cells (TH2 cells). Experiments in mice and humans have demonstrated requirements for the epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP) and IL-25 in the activation of ILC2s, but the sources and regulation of these signals remain poorly defined. In the small intestine, the epithelium consists of at least five distinct cellular lineages, including the tuft cell, whose function is unclear. Here we show that tuft cells constitutively express IL-25 to sustain ILC2 homeostasis in the resting lamina propria in mice. After helminth infection, tuft-cell-derived IL-25 further activates ILC2s to secrete IL-13, which acts on epithelial crypt progenitors to promote differentiation of tuft and goblet cells, leading to increased frequencies of both. Tuft cells, ILC2s and epithelial progenitors therefore comprise a response circuit that mediates epithelial remodelling associated with type 2 immunity in the small intestine, and perhaps at other mucosal barriers populated by these cells.
            • Record: found
            • Abstract: found
            • Article: not found

            Immune regulation by helminth parasites: cellular and molecular mechanisms.

            Immunology was founded by studying the body's response to infectious microorganisms, and yet microbial prokaryotes only tell half the story of the immune system. Eukaryotic pathogens--protozoa, helminths, fungi and ectoparasites--have all been powerful selective forces for immune evolution. Often, as with lethal protozoal parasites, the focus has been on acute infections and the inflammatory responses they evoke. Long-lived parasites such as the helminths, however, are more remarkable for their ability to downregulate host immunity, protecting themselves from elimination and minimizing severe pathology in the host.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation

              Summary Intestinal helminths are potent regulators of their host’s immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions.

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data CurationRole: MethodologyRole: SupervisionRole: Writing – Original Draft PreparationRole: Writing – Review & Editing
                Role: ConceptualizationRole: Data CurationRole: MethodologyRole: SupervisionRole: Writing – Original Draft PreparationRole: Writing – Review & Editing
                Journal
                F1000Res
                F1000Res
                F1000Research
                F1000Research
                F1000 Research Limited (London, UK )
                2046-1402
                23 October 2018
                2018
                : 7
                : F1000 Faculty Rev-1685
                Affiliations
                [1 ]Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Building 4, Room 211, Bethesda, MD, 20892, USA
                Author notes

                No competing interests were disclosed.

                Author information
                https://orcid.org/0000-0003-4932-2206
                Article
                10.12688/f1000research.15596.1
                6206608
                30416709
                e04675bd-38af-4283-9d2b-4255c9609fb0
                Copyright: © 2018 Gazzinelli-Guimaraes PH and Nutman TB

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The author(s) is/are employees of the US Government and therefore domestic copyright protection in USA does not apply to this work. The work may be protected under the copyright laws of other jurisdictions when used in those jurisdictions.

                History
                : 17 October 2018
                Funding
                Funded by: Division of Intramural Research of the National Institutes of Health
                This work was supported by the Division of Intramural Research of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Review
                Articles

                helminth,immune regulation,parasites,immune response,type-2 immunity,regulatory response.

                Comments

                Comment on this article

                Related Documents Log