+1 Recommend
0 collections
      • Record: found
      • Abstract: not found
      • Article: not found

      Human B-lymphocytes Express α2-6-Sialylated 6-Sulfo-N-acetyllactosamine Serving as a Preferred Ligand for CD22/Siglec-2

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          CD22/Siglec-2, an important inhibitory co-receptor on B-lymphocytes, is known to recognize alpha2-6-sialylated glycan as a specific ligand. Here we propose that the alpha2-6-sialylated and 6-GlcNAc-sulfated determinant serves as a preferred ligand for CD22 because the binding of a human B-cell line to CD22 was almost completely abrogated after incubating the cells with NaClO3, an inhibitor of cellular sulfate metabolism, and was also significantly inhibited by a newly generated monoclonal antibody specific to the alpha2-6-sialylated 6-sulfo-N-acetyllactosamine (LacNAc) determinant (KN343, murine IgM). The alpha2-6-sialylated 6-sulfo-LacNAc determinant defined by the antibody was significantly expressed on a majority of normal human peripheral B-lymphocytes as well as follicular B-lymphocytes in peripheral lymph nodes. The determinant was also expressed in endothelial cells of high endothelial venules of secondary lymphoid tissues, including lymph nodes, tonsils, and intestine-associated lymphoid tissues, more strongly than on B-lymphocytes, suggesting a role for CD22 in B-cell interaction with blood vessels and trafficking. These results indicate that the alpha2-6-sialylated 6-sulfo-LacNAc determinant serves as an endogenous ligand for human CD22 and suggest the possibility that 6-GlcNAc sulfation as well as alpha2-6-sialylation may regulate CD22/Siglec-2 functions in humans.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP.

          CD22 is a membrane immunoglobulin (mIg)-associated protein of B cells. CD22 is tyrosine-phosphorylated when mIg is ligated. Tyrosine-phosphorylated CD22 binds and activates SHP, a protein tyrosine phosphatase known to negatively regulate signaling through mIg. Ligation of CD22 to prevent its coaggregation with mIg lowers the threshold at which mIg activates the B cell by a factor of 100. In secondary lymphoid organs, CD22 may be sequestered away from mIg through interactions with counterreceptors on T cells. Thus, CD22 is a molecular switch for SHP that may bias mIg signaling to anatomic sites rich in T cells.
            • Record: found
            • Abstract: found
            • Article: not found

            6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells.

            The monoclonal antibody M-DC8 defines a major subset of human blood dendritic cells (DCs). Here we identify the M-DC8 structure as 6-sulfo LacNAc, a novel carbohydrate modification of the P selectin glycoprotein ligand 1 (PSGL-1). In contrast to previously described blood DCs, M-DC8+ DCs lack the cutaneous lymphocyte antigen (CLA) on PSGL-1 and fail to bind P and E selectin. Yet they express anaphylatoxin receptors (C5aR and C3aR) and the Fcgamma receptor III (CD16), which recruit cells to inflammatory sites. While sharing with DC1 the expression of myeloid markers and a potent capacity to prime T cells in vitro, M-DC8+ DCs produce far more TNF-alpha in response to the bacterial endotoxin lipopolysaccharide (LPS). Thus, 6-sulfo LacNAc-expressing DCs appear as a novel proinflammatory DC subset.
              • Record: found
              • Abstract: found
              • Article: not found

              Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation.

              Sialic acid (Sia) is a family of acidic nine-carbon sugars that occupies the nonreducing terminus of glycan chains. Diversity of Sia is achieved by variation in the linkage to the underlying sugar and modification of the Sia molecule. Here we identified Sia-dependent epitope specificity for GL7, a rat monoclonal antibody, to probe germinal centers upon T cell-dependent immunity. GL7 recognizes sialylated glycan(s), the alpha2,6-linked N-acetylneuraminic acid (Neu5Ac) on a lactosamine glycan chain(s), in both Sia modification- and Sia linkage-dependent manners. In mouse germinal center B cells, the expression of the GL7 epitope was upregulated due to the in situ repression of CMP-Neu5Ac hydroxylase (Cmah), the enzyme responsible for Sia modification of Neu5Ac to Neu5Gc. Such Cmah repression caused activation-dependent dynamic reduction of CD22 ligand expression without losing alpha2,6-linked sialylation in germinal centers. The in vivo function of Cmah was analyzed using gene-disrupted mice. Phenotypic analyses showed that Neu5Gc glycan functions as a negative regulator for B-cell activation in assays of T-cell-independent immunization response and splenic B-cell proliferation. Thus, Neu5Gc is required for optimal negative regulation, and the reaction is specifically suppressed in activated B cells, i.e., germinal center B cells.

                Author and article information

                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                October 26 2007
                November 02 2007
                : 282
                : 44
                : 32200-32207
                © 2007


                Comment on this article