Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Drought stress in provenances of Lupinus elegans from different altitudes Translated title: Estrés por sequía en Lupinus elegans procedentes de diferentes altitudes

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The response of plants to altitudinal gradients depends on several factors and might differ among life strategies. Understanding these responses is highly relevant for management of forest species, particularly under climate change scenarios. We explored the response to drought of different provenances of Lupinus elegans, obtained from an altitudinal gradient. This species is a shrub that acts as a nurse plant in temperate forests in its geographical range. Seeds were collected from five natural provenances across an altitudinal gradient (2312 m to 2885 m a.s.l.). A common-garden experiment was conducted with four drought treatments (irrigation at every 3, 7, 15 and 21 days) in a shade-house located at 1972 m a.s.l. All provenances presented reduced heights and numbers of leaves with increased drought intensity, regardless of site of origin. Survival among provenances presented an altitudinal pattern, where those belonging to higher sites exhibited greater survival. Provenances from lower altitudes, coming from drier and warmer sites, exhibited poorer survival against drought stress. Overall, our results indicate that there are differences among provenances, but since this species is a short lived perennial (five years on average), it is more sensitive to microclimate than to conditions determined for large scale patterns such as altitudinal gradients. This should be considered for management practices such as ecological restoration.

      Translated abstract

      La respuesta de las plantas a los gradientes altitudinales depende de varios factores y puede variar entre estrategias de vida. Entender esta respuesta es relevante para el manejo de especies forestales, en particular ante los efectos esperados del cambio climático. En este trabajo se exploró la respuesta a la sequía de diferentes procedencias de Lupinus elegans, obtenidas de un gradiente altitudinal. Esta especie es un arbusto que actúa como planta nodriza en bosques templados a lo largo de su área de distribución geográfica. Se colectaron semillas de cinco procedencias a los largo de un gradiente altitudinal (2312 m a 2885 m snm). Se llevó a cabo un experimento de jardín común con cuatro tratamientos de sequía (riego cada 3, 7, 15 y 21 días) en una casa de sombra localizada a 1972 m snm. Las plantas de todas las procedencias mostraron un menor tamaño y número de hojas conforme aumentó el grado de sequía, independientemente de la procedencia. La supervivencia entre las procedencias mostró una relación con el gradiente altitudinal de origen, pues aquellas procedentes de sitios a mayor altitud mostraron mayor supervivencia. Las procedencias de altitudes menores, que en principio son de lugares más secos y cálidos, mostraron baja supervivencia en respuesta a la sequía. Los resultados indican que hay una diferenciación entre procedencias, pero que siendo esta especie perenne de vida corta (5 años), es más sensible a las condiciones microclimáticas que a las condiciones determinadas por patrones a escalas mayores como son los gradientes altitudinales. Esto debe de ser considerado para prácticas de manejo como la restauración ecológica.

      Related collections

      Most cited references 52

      • Record: found
      • Abstract: found
      • Article: found

      Ecological and Evolutionary Responses to Recent Climate Change

      Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species' ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress.

        The extension of growing season at high northern latitudes seems increasingly clear from satellite observations of vegetation extent and duration. This extension is also thought to explain the observed increase in amplitude of seasonal variations in atmospheric CO2 concentration. Increased plant respiration and photosynthesis both correlate well with increases in temperature this century and are therefore the most probable link between the vegetation and CO2 observations. From these observations, it has been suggested that increases in temperature have stimulated carbon uptake in high latitudes and for the boreal forest system as a whole. Here we present multi-proxy tree-ring data (ring width, maximum late-wood density and carbon-isotope composition) from 20 productive stands of white spruce in the interior of Alaska. The tree-ring records show a strong and consistent relationship over the past 90 years and indicate that, in contrast with earlier predictions, radial growth has decreased with increasing temperature. Our data show that temperature-induced drought stress has disproportionately affected the most rapidly growing white spruce, suggesting that, under recent climate warming, drought may have been an important factor limiting carbon uptake in a large portion of the North American boreal forest. If this limitation in growth due to drought stress is sustained, the future capacity of northern latitudes to sequester carbon may be less than currently expected.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Drier summers cancel out the CO2 uptake enhancement induced by warmer springs.

          An increase in photosynthetic activity of the northern hemisphere terrestrial vegetation, as derived from satellite observations, has been reported in previous studies. The amplitude of the seasonal cycle of the annually detrended atmospheric CO(2) in the northern hemisphere (an indicator of biospheric activity) also increased during that period. We found, by analyzing the annually detrended CO(2) record by season, that early summer (June) CO(2) concentrations indeed decreased from 1985 to 1991, and they have continued to decrease from 1994 up to 2002. This decrease indicates accelerating springtime net CO(2) uptake. However, the CO(2) minimum concentration in late summer (an indicator of net growing-season uptake) showed no positive trend since 1994, indicating that lower net CO(2) uptake during summer cancelled out the enhanced uptake during spring. Using a recent satellite normalized difference vegetation index data set and climate data, we show that this lower summer uptake is probably the result of hotter and drier summers in both mid and high latitudes, demonstrating that a warming climate does not necessarily lead to higher CO(2) growing-season uptake, even in high-latitude ecosystems that are considered to be temperature limited.
            Bookmark

            Author and article information

            Affiliations
            [1 ] Universidad Michoacana de San Nicolás de Hidalgo México
            [2 ] Universidad Nacional Autónoma de México México
            Contributors
            Role: ND
            Role: ND
            Role: ND
            Role: ND
            Journal
            mb
            Madera y bosques
            Madera bosques
            Instituto de Ecología A.C. (Xalapa )
            1405-0471
            June 2015
            : 21
            : 1
            : 35-43
            S1405-04712015000100004

            http://creativecommons.org/licenses/by/4.0/

            Product
            Product Information: SciELO Mexico
            Categories
            Forestry

            Comments

            Comment on this article