Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

MicroRNA-33b Inhibits Breast Cancer Metastasis by Targeting HMGA2, SALL4 and Twist1

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      MicroRNAs are a class of small noncoding RNAs that regulate gene expression post-transcriptionally either by inhibiting protein translation or by causing the degradation of target mRNAs. Current evidence indicates that miR-33b is involved in the regulation of lipid metabolism, cholesterol homeostasis, glucose metabolism and several human diseases; however, whether miR-33b contributes to the pathogenesis of human cancers and participates in the regulation of self-renewal of human cancer stem cells remains unknown. Here, we report the identification of miR-33b as a negative regulator of cell stemness and metastasis in breast cancer. Compared with paired normal breast tissues, miR-33b expression is downregulated in breast tumor samples and is inversely correlated with lymph node metastatic status. Ectopic overexpression of miR-33b in highly metastatic breast cancer cells suppresses cell self-renewal, migration and invasion in vitro and inhibits lung metastasis in vivo. Conversely, miR-33b knockdown promotes the self-renewal, migration and invasion capabilities of noncancerous mammary epithelial cells. The mechanism through which miR-33b inhibits the stemness, migration and invasion of breast cancer cells is by targeting HMGA2, SALL4 and Twist1. These data indicate that miR-33b acts as an onco-suppressive microRNA in breast cancer progression by inhibiting the stemness and metastasis of breast cancer cells.

      Related collections

      Most cited references 49

      • Record: found
      • Abstract: found
      • Article: not found

      MicroRNAs: genomics, biogenesis, mechanism, and function.

       David Bartel (2004)
      MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        MicroRNAs: target recognition and regulatory functions.

         David Bartel (2009)
        MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          The epithelial-mesenchymal transition generates cells with properties of stem cells.

          The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.
            Bookmark

            Author and article information

            Affiliations
            [1 ]State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University , Xiamen 361102, China
            [2 ]Department of Surgical Oncology, First Affiliated Hospital of Xiamen University , Xiamen 361003, China
            [3 ]Medical College, Xiamen University , Xiamen 361102, China
            [4 ]College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
            Author notes
            [*]

            These authors contributed equally to this work.

            Journal
            Sci Rep
            Sci Rep
            Scientific Reports
            Nature Publishing Group
            2045-2322
            28 April 2015
            2015
            : 5
            25919570
            4412117
            srep09995
            10.1038/srep09995
            Copyright © 2015, Macmillan Publishers Limited. All rights reserved

            This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

            Categories
            Article

            Uncategorized

            Comments

            Comment on this article