+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of GABA A Receptor Subunit Expression in Substance Use Disorders

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The modulation of neuronal cell firing is mediated by the release of the neurotransmitter GABA (γ-aminobuytric acid), which binds to two major families of receptors. The ionotropic GABAA receptors (GABA ARs) are composed of five distinct subunits that vary in expression by brain region and cell type. The action of GABA on GABA ARs is modulated by a variety of clinically and pharmacologically important drugs such as benzodiazepines and alcohol. Exposure to and abuse of these substances disrupts homeostasis and induces plasticity in GABAergic neurotransmission, often via the regulation of receptor expression. Here, we review the regulation of GABA AR subunit expression in adaptive and pathological plasticity, with a focus on substance use. We examine the factors influencing the expression of GABA AR subunit genes including the regulation of the 5′ and 3′ untranslated regions, variations in DNA methylation, immediate early genes and transcription factors that regulate subunit expression, translational and post-translational modifications, and other forms of receptor regulation beyond expression. Advancing our understanding of the factors regulating GABA AR subunit expression during adaptive plasticity, as well as during substance use and withdrawal will provide insight into the role of GABAergic signaling in substance use disorders, and contribute to the development of novel targeted therapies.

          Related collections

          Most cited references 177

          • Record: found
          • Abstract: found
          • Article: not found

          Neurocircuitry of addiction.

          Drug addiction is a chronically relapsing disorder that has been characterized by (1) compulsion to seek and take the drug, (2) loss of control in limiting intake, and (3) emergence of a negative emotional state (eg, dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when access to the drug is prevented. Drug addiction has been conceptualized as a disorder that involves elements of both impulsivity and compulsivity that yield a composite addiction cycle composed of three stages: 'binge/intoxication', 'withdrawal/negative affect', and 'preoccupation/anticipation' (craving). Animal and human imaging studies have revealed discrete circuits that mediate the three stages of the addiction cycle with key elements of the ventral tegmental area and ventral striatum as a focal point for the binge/intoxication stage, a key role for the extended amygdala in the withdrawal/negative affect stage, and a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex-dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control. The transition to addiction involves neuroplasticity in all of these structures that may begin with changes in the mesolimbic dopamine system and a cascade of neuroadaptations from the ventral striatum to dorsal striatum and orbitofrontal cortex and eventually dysregulation of the prefrontal cortex, cingulate gyrus, and extended amygdala. The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.
            • Record: found
            • Abstract: found
            • Article: not found

            microRNA functions.

            microRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional gene regulation. In animal cells, miRNAs regulate their targets by translational inhibition and mRNA destabilization. Here, we review recent work in animal models that provide insight into the diverse roles of miRNAs in vivo.
              • Record: found
              • Abstract: found
              • Article: not found

              The mechanism of eukaryotic translation initiation and principles of its regulation.

              Protein synthesis is principally regulated at the initiation stage (rather than during elongation or termination), allowing rapid, reversible and spatial control of gene expression. Progress over recent years in determining the structures and activities of initiation factors, and in mapping their interactions in ribosomal initiation complexes, have advanced our understanding of the complex translation initiation process. These developments have provided a solid foundation for studying the regulation of translation initiation by mechanisms that include the modulation of initiation factor activity (which affects almost all scanning-dependent initiation) and through sequence-specific RNA-binding proteins and microRNAs (which affect individual mRNAs).

                Author and article information

                Int J Mol Sci
                Int J Mol Sci
                International Journal of Molecular Sciences
                22 June 2020
                June 2020
                : 21
                : 12
                Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA; barkej4@
                Author notes
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (



                Comment on this article