65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fast Growth Increases the Selective Advantage of a Mutation Arising Recurrently during Evolution under Metal Limitation

      research-article
      ,   , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the evolution of biological systems requires untangling the molecular mechanisms that connect genetic and environmental variations to their physiological consequences. Metal limitation across many environments, ranging from pathogens in the human body to phytoplankton in the oceans, imposes strong selection for improved metal acquisition systems. In this study, we uncovered the genetic and physiological basis of adaptation to metal limitation using experimental populations of Methylobacterium extorquens AM1 evolved in metal-deficient growth media. We identified a transposition mutation arising recurrently in 30 of 32 independent populations that utilized methanol as a carbon source, but not in any of the 8 that utilized only succinate. These parallel insertion events increased expression of a novel transporter system that enhanced cobalt uptake. Such ability ensured the production of vitamin B 12, a cobalt-containing cofactor, to sustain two vitamin B 12–dependent enzymatic reactions essential to methanol, but not succinate, metabolism. Interestingly, this mutation provided higher selective advantages under genetic backgrounds or incubation temperatures that permit faster growth, indicating growth-rate–dependent epistatic and genotype-by-environment interactions. Our results link beneficial mutations emerging in a metal-limiting environment to their physiological basis in carbon metabolism, suggest that certain molecular features may promote the emergence of parallel mutations, and indicate that the selective advantages of some mutations depend generically upon changes in growth rate that can stem from either genetic or environmental influences.

          Author Summary

          Effects of mutations can change under different genetic backgrounds or environmental factors, also known as epistasis and genotype-by-environment interactions (G×E), respectively. Though epistasis and G×E are traditionally treated as distinct phenomena, our study of a beneficial mutation highlights their commonality. This mutation resulted from insertion of the same transposable element upstream of a novel cobalt transport system in 30 of 32 independent populations during evolution in metal-limited media. The resulting increased cobalt uptake provided a selective benefit that depended upon two environmental factors: cobalt limitation and growth substrates whose metabolism requires a particular vitamin B 12 (which contains cobalt) -dependent biochemical pathway. Furthermore, this mutation exhibited epistatic and G×E interactions with other cellular processes in a generic way, such that its selective advantage increased as cells were able to grow faster. This growth-rate dependence accords with a simple model: the slowest of multiple physiological processes needed for growth exerts the greatest control over an organism's growth rate. It suggests that as growth results from the performance of the entire physiological system, genes or environmental factors that affect distinct physiological processes may thus interact through their convergent effects on growth phenotypes.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.

          Major phenotypic changes evolve in parallel in nature by molecular mechanisms that are largely unknown. Here, we use positional cloning methods to identify the major chromosome locus controlling armor plate patterning in wild threespine sticklebacks. Mapping, sequencing, and transgenic studies show that the Ectodysplasin (EDA) signaling pathway plays a key role in evolutionary change in natural populations and that parallel evolution of stickleback low-plated phenotypes at most freshwater locations around the world has occurred by repeated selection of Eda alleles derived from an ancestral low-plated haplotype that first appeared more than two million years ago. Members of this clade of low-plated alleles are present at low frequencies in marine fish, which suggests that standing genetic variation can provide a molecular basis for rapid, parallel evolution of dramatic phenotypic change in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Is genetic evolution predictable?

            Ever since the integration of Mendelian genetics into evolutionary biology in the early 20th century, evolutionary geneticists have for the most part treated genes and mutations as generic entities. However, recent observations indicate that all genes are not equal in the eyes of evolution. Evolutionarily relevant mutations tend to accumulate in hotspot genes and at specific positions within genes. Genetic evolution is constrained by gene function, the structure of genetic networks, and population biology. The genetic basis of evolution may be predictable to some extent, and further understanding of this predictability requires incorporation of the specific functions and characteristics of genes into evolutionary theory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insertion sequences.

              Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2009
                September 2009
                18 September 2009
                : 5
                : 9
                : e1000652
                Affiliations
                [1]Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
                Université Paris Descartes, INSERM U571, France
                Author notes
                [¤]

                Current address: Swarthmore College, Swarthmore, Pennsylvania, United States of America

                Conceived and designed the experiments: HHC. Performed the experiments: HHC JB. Analyzed the data: HHC JB CJM. Contributed reagents/materials/analysis tools: HHC CJM. Wrote the paper: HHC CJM.

                Article
                09-PLGE-RA-0842R2
                10.1371/journal.pgen.1000652
                2732905
                19763169
                e077e168-1785-44c4-b0ad-d59b32bb4f29
                Chou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 May 2009
                : 17 August 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Evolutionary Biology/Microbial Evolution and Genomics
                Genetics and Genomics/Microbial Evolution and Genomics
                Genetics and Genomics/Population Genetics
                Microbiology/Environmental Microbiology
                Microbiology/Microbial Evolution and Genomics
                Microbiology/Microbial Physiology and Metabolism

                Genetics
                Genetics

                Comments

                Comment on this article