20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wearable Potentiometric Sensors for Medical Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wearable potentiometric sensors have received considerable attention owing to their great potential in a wide range of physiological and clinical applications, particularly involving ion detection in sweat. Despite the significant progress in the manner that potentiometric sensors are integrated in wearable devices, in terms of materials and fabrication approaches, there is yet plenty of room for improvement in the strategy adopted for the sample collection. Essentially, this involves a fluidic sampling cell for continuous sweat analysis during sport performance or sweat accumulation via iontophoresis induction for one-spot measurements in medical settings. Even though the majority of the reported papers from the last five years describe on-body tests of wearable potentiometric sensors while the individual is practicing a physical activity, the medical utilization of these devices has been demonstrated on very few occasions and only in the context of cystic fibrosis diagnosis. In this sense, it may be important to explore the implementation of wearable potentiometric sensors into the analysis of other biofluids, such as saliva, tears and urine, as herein discussed. While the fabrication and uses of wearable potentiometric sensors vary widely, there are many common issues related to the analytical characterization of such devices that must be consciously addressed, especially in terms of sensor calibration and the validation of on-body measurements. After the assessment of key wearable potentiometric sensors reported over the last five years, with particular attention paid to those for medical applications, the present review offers tentative guidance regarding the characterization of analytical performance as well as analytical and clinical validations, thereby aiming at generating debate in the scientific community to allow for the establishment of well-conceived protocols.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.

          Skin is the largest organ of the human body, and it offers a diagnostic interface rich with vital biological signals from the inner organs, blood vessels, muscles, and dermis/epidermis. Soft, flexible, and stretchable electronic devices provide a novel platform to interface with soft tissues for robotic feedback and control, regenerative medicine, and continuous health monitoring. Here, we introduce the term "lab-on-skin" to describe a set of electronic devices that have physical properties, such as thickness, thermal mass, elastic modulus, and water-vapor permeability, which resemble those of the skin. These devices can conformally laminate on the epidermis to mitigate motion artifacts and mismatches in mechanical properties created by conventional, rigid electronics while simultaneously providing accurate, non-invasive, long-term, and continuous health monitoring. Recent progress in the design and fabrication of soft sensors with more advanced capabilities and enhanced reliability suggest an impending translation of these devices from the research lab to clinical environments. Regarding these advances, the first part of this manuscript reviews materials, design strategies, and powering systems used in soft electronics. Next, the paper provides an overview of applications of these devices in cardiology, dermatology, electrophysiology, and sweat diagnostics, with an emphasis on how these systems may replace conventional clinical tools. The review concludes with an outlook on current challenges and opportunities for future research directions in wearable health monitoring.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform.

            Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Wearable Chemical Sensors: Present Challenges and Future Prospects

                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                17 January 2019
                January 2019
                : 19
                : 2
                : 363
                Affiliations
                Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden; marcpp@ 123456kth.se
                Author notes
                [* ]Correspondence: mariacb@ 123456kth.se (M.C.); gacp@ 123456kth.se (G.A.C.); Tel.: +46-8790-9096 (M.C.); +46-8790-8122 (G.A.C.)
                Author information
                https://orcid.org/0000-0002-3858-8466
                https://orcid.org/0000-0002-1344-8432
                https://orcid.org/0000-0002-1221-3906
                Article
                sensors-19-00363
                10.3390/s19020363
                6359219
                30658434
                e07c2556-fed9-4473-8dd7-7398a89e7303
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 December 2018
                : 15 January 2019
                Categories
                Review

                Biomedical engineering
                potentiometry,all-solid-state,wearable sensing,sampling cell,iontophoresis,sweat analysis,clinical decision-making,cystic fibrosis

                Comments

                Comment on this article