44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patterns of Genetic and Reproductive Traits Differentiation in Mainland vs. Corsican Populations of Bumblebees

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Populations on islands often exhibit lower levels of genetic variation and ecomorphological divergence compared to their mainland relatives. While phenotypic differentiation in characters, such as size or shape among insular organisms, has been well studied, insular differentiation in quantitative reproductive traits involved in chemical communication has received very little attention to date. Here, we investigated the impact of insularity on two syntopic bumblebee species pairs: one including species that are phylogenetically related ( Bombus terrestris and B. lucorum), and the other including species that interact ecologically ( B. terrestris and its specific nest inquiline B. vestalis). For each bumblebee species, we characterized the patterns of variation and differentiation of insular (Corsican) vs. mainland (European) populations (i) with four genes (nuclear and mitochondrial, 3781 bp) and (ii) in the chemical composition of male marking secretions (MMS), a key trait for mate attraction in bumblebees, by gas chromatography-mass spectrometry (GC-MS). Our results provide evidence for genetic differentiation in Corsican bumblebees and show that, contrary to theoretical expectations, island populations of bumblebees exhibit levels of genetic variation similar to the mainland populations. Likewise, our comparative chemical analyses of MMS indicate that Corsican populations of bumblebees are significantly differentiated from the mainland yet they hold comparative levels of within-population MMS variability compared to the mainland. Therefore, insularity has led Corsican populations to diverge both genetically and chemically from their mainland relatives, presumably through genetic drift, but without a decrease of genetic diversity in island populations. We hypothesize that MMS divergence in Corsican bumblebees was driven by a persistent lack of gene flow with mainland populations and reinforced by the preference of Corsican females for sympatric (Corsican) MMS. The impoverished Corsican bumblebee fauna has not led to relaxation of stabilizing selection on MMS but to consistent differentiation chemical reproductive traits on the island.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Variation in mate choice and mating preferences: a review of causes and consequences.

          The aim of this review is to consider variation in mating preferences among females. We define mating preferences as the sensory and behavioural properties that influence the propensity of individuals to mate with certain phenotypes. Two properties of mating preferences can be distinguished: (1) "preference functions'-the order with which an individual ranks prospective mates and (2) "choosiness'-the effort an individual is prepared to invest in mate assessment. Patterns of mate choices can be altered by changing the costs of choosiness without altering the preference function. We discuss why it is important to study variation in female mating behaviour and identify five main areas of interest: Variation in mating preferences and costs of choosiness could (1) influence the rate and direction of evolution by sexual selection, (2) provide information about the evolutionary history of female preferences, (3) help explain inter-specific differences in the evolution of secondary sexual characteristics, (4) provide information about the level of benefits gained from mate choice, (5) provide information about the underlying mechanisms of mate choice. Variation in mate choice could be due to variability in preference functions, degree of choosiness, or both, and may arise due to genetic differences, developmental trajectories or proximate environmental factors. We review the evidence for genetic variation from genetic studies of heritability and also from data on the repeatability of mate-choice decisions (which can provide information about the upper limits to heritability). There can be problems in interpreting patterns of mate choice in terms of variation in mating preferences and we illustrate two main points. First, some factors can lead to mate choice patterns that mimic heritable variation in preferences and secondly other factors may obscure heritable preferences. These factors are divided into three overlapping classes, environmental, social and the effect of the female phenotype. The environmental factors discussed include predation risk and the costs of sampling; the social factors discussed include the effect of male-male interactions as well as female competition. We review the literature which presents data on how females sample males and discuss the number of cues females use. We conclude that sexual-selection studies have paid far less attention to variation among females than to variation among males, and that there is still much to learn about how females choose males and why different females make different choices. We suggest a number of possible lines for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Do island populations have less genetic variation than mainland populations?

            R Frankham (1997)
            Island populations are much more prone to extinction than mainland populations. The reasons for this remain controversial. If inbreeding and loss of genetic variation are involved, then genetic variation must be lower on average in island than mainland populations. Published data on levels of genetic variation for allozymes, nuclear DNA markers, mitochondrial DNA, inversions and quantitative characters in island and mainland populations were analysed. A large and highly significant majority of island populations have less allozyme genetic variation than their mainland counterparts (165 of 202 comparisons), the average reduction being 29 per cent. The magnitude of differences was related to dispersal ability. There were related differences for all the other measures. Island endemic species showed lower genetic variation than related mainland species in 34 of 38 cases. The proportionate reduction in genetic variation was significantly greater in island endemic than in nonendemic island populations in mammals and birds, but not in insects. Genetic factors cannot be discounted as a cause of higher extinction rates of island than mainland populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenotypic similarity and the evolutionary significance of countergradient variation.

              Countergradient variation is a geographical pattern of genotypes (with respect to environments) in which genetic influences on a trait oppose environmental influences, thereby minimizing phenotypic change along the gradient. Phenotypic similarity across changing environments ought to be of intense interest because it belies considerable genotypic change. When it occurs in characters that are positively associated with fitness, countergradient variation conflicts with the hypothesis that local adaptation to one environment trades off against performance in another environment. Cases of countergradient variation therefore offer unique insight into the mechanisms that produce and maintain phenotypic similarity and/or differences along environmental gradients. Copyright © 1995. Published by Elsevier Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                6 June 2013
                : 8
                : 6
                : e65642
                Affiliations
                [1 ]Laboratoire de Zoologie, University of Mons, Mons, Belgium
                [2 ]Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
                [3 ]Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
                [4 ]Institut national de la recherche agronomique, UMR Centre de Biologie pour la Gestion des Populations, Montferrier sur Lez, France
                CNRS, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TL NJV. Performed the experiments: TL DM. Analyzed the data: TL NJV IV. Contributed reagents/materials/analysis tools: TL DM SD PL IV JYR PR. Wrote the paper: TL NJV. Data interpretation and critical discussion of the conclusion: TL NJV DM SD PL IV JYR PR.

                Article
                PONE-D-13-10853
                10.1371/journal.pone.0065642
                3675023
                23755263
                e08235f8-e477-4424-af1d-3eeb1b489bb9
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 March 2013
                : 25 April 2013
                Page count
                Pages: 14
                Funding
                This work was supported by the Fonds pour la recherche dans l'industrie et l'agriculture (FRIA), the Fonds national pour la recherche scientifique (FRS-FNRS), the Fonds pour la Formation à la Recherche Fondamentale et Collective (FNRS, FRFC 2.4613.10), the Office de l'Environnement de la Corse, the Direction Régionale de l'Environnement de Corse, the Academy of Sciences of the Czech Republic (subvention for development of research organization RVO: 61388963), the network Bibliothèque du Vivant funded by the CNRS, the Muséum National d'Histoire Naturelle and the Institut National de la recherche en Agronomie, and technically supported by the Genoscope. TL, PL and SD are FRIA grant holders. NJV received financial support from the FRS-FNRS (Belgium) through a post-doctoral grant (2008–2012). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Chemical Biology
                Ecology
                Biogeography
                Evolutionary Biology
                Evolutionary Processes
                Genetic Drift
                Sexual Selection
                Speciation
                Evolutionary Systematics
                Phylogenetics
                Evolutionary Genetics
                Zoology
                Entomology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article