4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Propeptide-Mediated Inhibition of Myostatin Increases Muscle Mass Through Inhibiting Proteolytic Pathways in Aged Mice

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

          Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Double muscling in cattle due to mutations in the myostatin gene.

            Myostatin (GDF-8) is a member of the transforming growth factor beta superfamily of secreted growth and differentiation factors that is essential for proper regulation of skeletal muscle mass in mice. Here we report the myostatin sequences of nine other vertebrate species and the identification of mutations in the coding sequence of bovine myostatin in two breeds of double-muscled cattle, Belgian Blue and Piedmontese, which are known to have an increase in muscle mass relative to conventional cattle. The Belgian Blue myostatin sequence contains an 11-nucleotide deletion in the third exon which causes a frameshift that eliminates virtually all of the mature, active region of the molecule. The Piedmontese myostatin sequence contains a missense mutation in exon 3, resulting in a substitution of tyrosine for an invariant cysteine in the mature region of the protein. The similarity in phenotypes of double-muscled cattle and myostatin null mice suggests that myostatin performs the same biological function in these two species and is a potentially useful target for genetic manipulation in other farm animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Reversible Modification Regulates the Membrane-Binding State of Apg8/Aut7 Essential for Autophagy and the Cytoplasm to Vacuole Targeting Pathway

              Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature. We show here that the nature of the association of Apg8 with membranes changes depending on a series of modifications of the protein itself. First, the carboxy-terminal Arg residue of newly synthesized Apg8 is removed by Apg4/Aut2, a novel cysteine protease, and a Gly residue becomes the carboxy-terminal residue of the protein that is now designated Apg8FG. Subsequently, Apg8FG forms a conjugate with an unidentified molecule “X” and thereby binds tightly to membranes. This modification requires the carboxy-terminal Gly residue of Apg8FG and Apg7, a ubiquitin E1-like enzyme. Finally, the adduct Apg8FG-X is reversed to soluble or loosely membrane-bound Apg8FG by cleavage by Apg4. The mode of action of Apg4, which cleaves both newly synthesized Apg8 and modified Apg8FG, resembles that of deubiquitinating enzymes. A reaction similar to ubiquitination is probably involved in the second modification. The reversible modification of Apg8 appears to be coupled to the membrane dynamics of autophagy and the Cvt pathway.
                Bookmark

                Author and article information

                Journal
                The Journals of Gerontology Series A: Biological Sciences and Medical Sciences
                The Journals of Gerontology Series A: Biological Sciences and Medical Sciences
                Oxford University Press (OUP)
                1079-5006
                1758-535X
                August 12 2014
                January 11 2014
                : 69
                : 9
                : 1049-1059
                Article
                10.1093/gerona/glt170
                © 2014

                Comments

                Comment on this article