0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Hyperhomocysteinemia on the Platelet-Driven Contraction of Blood Clots

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperhomocysteinemia (HHcy) is associated with thrombosis, but the mechanistic links between them are not understood. We studied effects of homocysteine (Hcy) on clot contraction in vitro and in a rat model of HHcy. Incubation of blood with exogenous Hcy for 1 min enhanced clot contraction, while 15-min incubation led to a dose-dependent suppression of contraction. These effects were likely due to direct Hcy-induced platelet activation followed by exhaustion, as revealed by an increase in fibrinogen-binding capacity and P-selectin expression determined by flow cytometry. In the blood of rats with HHcy, clot contraction was enhanced at moderately elevated Hcy levels (10–50 μM), while at higher Hcy levels (>50 μM), the onset of clot contraction was delayed. HHcy was associated with thrombocytosis combined with a reduced erythrocyte count and hypofibrinogenemia. These data suggest that in HHcy, platelets get activated directly and indirectly, leading to enhanced clot contraction that is facilitated by the reduced content and resilience of fibrin and erythrocytes in the clot. The excessive platelet activation can lead to exhaustion and impaired contractility, which makes clots larger and more obstructive. In conclusion, HHcy modulates blood clot contraction, which may comprise an underappreciated pro- or antithrombotic mechanism.

          Related collections

          Most cited references 71

          • Record: found
          • Abstract: found
          • Article: not found

          Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin.

          Contraction of blood clots is necessary for hemostasis and wound healing and to restore flow past obstructive thrombi, but little is known about the structure of contracted clots or the role of erythrocytes in contraction. We found that contracted blood clots develop a remarkable structure, with a meshwork of fibrin and platelet aggregates on the exterior of the clot and a close-packed, tessellated array of compressed polyhedral erythrocytes within. The same results were obtained after initiation of clotting with various activators and also with clots from reconstituted human blood and mouse blood. Such close-packed arrays of polyhedral erythrocytes, or polyhedrocytes, were also observed in human arterial thrombi taken from patients. The mechanical nature of this shape change was confirmed by polyhedrocyte formation from the forces of centrifugation of blood without clotting. Platelets (with their cytoskeletal motility proteins) and fibrin(ogen) (as the substrate bridging platelets for contraction) are required to generate the forces necessary to segregate platelets/fibrin from erythrocytes and to compress erythrocytes into a tightly packed array. These results demonstrate how contracted clots form an impermeable barrier important for hemostasis and wound healing and help explain how fibrinolysis is greatly retarded as clots contract.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanics and contraction dynamics of single platelets and implications for clot stiffening.

            Platelets interact with fibrin polymers to form blood clots at sites of vascular injury. Bulk studies have shown clots to be active materials, with platelet contraction driving the retraction and stiffening of clots. However, neither the dynamics of single-platelet contraction nor the strength and elasticity of individual platelets, both of which are important for understanding clot material properties, have been directly measured. Here we use atomic force microscopy to measure the mechanics and dynamics of single platelets. We find that platelets contract nearly instantaneously when activated by contact with fibrinogen and complete contraction within 15 min. Individual platelets can generate an average maximum contractile force of 29 nN and form adhesions stronger than 70 nN. Our measurements show that when exposed to stiffer microenvironments, platelets generated higher stall forces, which indicates that platelets may be able to contract heterogeneous clots more uniformly. The high elasticity of individual platelets, measured to be 10 kPa after contraction, combined with their high contractile forces, indicates that clots may be stiffened through direct reinforcement by platelets as well as by strain stiffening of fibrin under tension due to platelet contraction. These results show how the mechanosensitivity and mechanics of single cells can be used to dynamically alter the material properties of physiologic systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of homocysteine-induced atherothrombosis.

               S Lentz (2005)
              Elevation of plasma homocysteine level is a risk factor for cardiovascular disease, stroke, and venous thromboembolism. It is still uncertain, however, whether hyperhomocysteinemia is a causative factor or a marker of vascular disease. The strongest evidence that homocysteine plays a causal role in atherothrombosis has been provided by studies using animal models. In the past decade, considerable progress in defining the vascular effects of hyperhomocysteinemia was achieved through the use of genetic and dietary approaches to induce hyperhomocysteinemia in experimental animals. A key vascular phenotype observed in hyperhomocysteinemic animals is endothelial dysfunction, manifested by decreased bioavailability of endothelium-derived nitric oxide. Impairment of endothelial function may be mediated by either accelerated oxidative inactivation of nitric oxide or inhibition of nitric oxide production caused by the endogenous nitric oxide synthase inhibitor, asymmetric dimethylarginine. Hyperhomocysteinemia also increases susceptibility to arterial thrombosis and accelerates the development of atherosclerosis in susceptible models such as the apolipoprotein E-deficient mouse. Mechanisms of atherothrombosis may include homocysteine-induced thiolation or acylation of plasma or endothelial proteins and endoplasmic reticulum stress, which activates signal transduction pathways leading to inflammation and apoptosis.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Metabolites
                Metabolites
                metabolites
                Metabolites
                MDPI
                2218-1989
                01 June 2021
                June 2021
                : 11
                : 6
                Affiliations
                [1 ]Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; litvinov@ 123456pennmedicine.upenn.edu
                [2 ]Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; alinapeshkova26@ 123456gmail.com (A.D.P.); mrgiangleminh@ 123456gmail.com (G.L.M.); khaertdinofnn@ 123456gmail.com (N.N.K.); natalja.evtugyna@ 123456gmail.com (N.G.E.); sitdikovaguzel@ 123456gmail.com (G.F.S.)
                Author notes
                [* ]Correspondence: weisel@ 123456pennmedicine.upenn.edu ; Tel.: +1-215-898-3573
                Article
                metabolites-11-00354
                10.3390/metabo11060354
                8228611
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article