16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MiR-17 Downregulation by High Glucose Stabilizes Thioredoxin-Interacting Protein and Removes Thioredoxin Inhibition on ASK1 Leading to Apoptosis

      , ,
      Toxicological Sciences
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d9828728e122">Pregestational diabetes significantly increases the risk of neural tube defects (NTDs). Maternal diabetes activates an Apoptosis Signal-regulating Kinase 1 (ASK1)-initiated pathway, which triggers neural stem cell apoptosis of the developing neuroepithelium leading to NTD formation. How high glucose of diabetes activates ASK1 is still unclear. In this study, we investigated the mechanism underlying high glucose-induced ASK1 activation. High glucose suppressed miR-17 expression, which led to an increase in its target gene Txnip (Thioredoxin-interacting protein). High glucose-increased Txnip enhanced its binding to the ASK1 inhibitor, thioredoxin (Trx), and thereby sequestered Trx from the Trx-ASK1 complex. High glucose-induced ASK1 activation and consequent apoptosis were abrogated by either the miR-17 mimic or Txnip siRNA knockdown. In contrast, the miR-17 inhibitor or Txnip ectopic overexpression mimicked the stimulative effect of high glucose on ASK1 and apoptosis. Thus, our study demonstrated that miR-17 repression mediates the pro-apoptotic effect of high glucose, and revealed a new mechanism underlying ASK1 activation, in which decreased miR-17 removes Trx inhibition on ASK1 through Txnip. </p>

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.

          Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)-regulatory protein thought to have anti-apoptotic effects, was identified as an interacting partner of ASK1. Trx associated with the N-terminal portion of ASK1 in vitro and in vivo. Expression of Trx inhibited ASK1 kinase activity and the subsequent ASK1-dependent apoptosis. Treatment of cells with N-acetyl-L-cysteine also inhibited serum withdrawal-, TNF-alpha- and hydrogen peroxide-induced activation of ASK1 as well as apoptosis. The interaction between Trx and ASK1 was found to be highly dependent on the redox status of Trx. Moreover, inhibition of Trx resulted in activation of endogenous ASK1 activity, suggesting that Trx is a physiological inhibitor of ASK1. The evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine- and stress-induced apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition.

            We examined the effect of reactive oxygen species (ROS) on MicroRNAs (miRNAs) expression in endothelial cells in vitro, and in mouse skeletal muscle following acute hindlimb ischemia. Human umbilical vein endothelial cells (HUVEC) were exposed to 200 μM hydrogen peroxide (H(2)O(2)) for 8 to 24 h; miRNAs profiling showed that miR-200c and the co-transcribed miR-141 increased more than eightfold. The other miR-200 gene family members were also induced, albeit to a lower level. Furthermore, miR-200c upregulation was not endothelium restricted, and occurred also on exposure to an oxidative stress-inducing drug: 1,3-bis(2 chloroethyl)-1nitrosourea (BCNU). miR-200c overexpression induced HUVEC growth arrest, apoptosis and senescence; these phenomena were also induced by H(2)O(2) and were partially rescued by miR-200c inhibition. Moreover, miR-200c target ZEB1 messenger RNA and protein were downmodulated by H(2)O(2) and by miR-200c overexpression. ZEB1 knockdown recapitulated miR-200c-induced responses, and expression of a ZEB1 allele non-targeted by miR-200c, prevented miR-200c phenotype. The mechanism of H(2)O(2)-mediated miR-200c upregulation involves p53 and retinoblastoma proteins. Acute hindlimb ischemia enhanced miR-200c in wild-type mice skeletal muscle, whereas in p66(ShcA -/-) mice, which display lower levels of oxidative stress after ischemia, upregulation of miR-200c was markedly inhibited. In conclusion, ROS induce miR-200c and other miR-200 family members; the ensuing downmodulation of ZEB1 has a key role in ROS-induced apoptosis and senescence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The microRNA-17-92 family of microRNA clusters in development and disease.

              Overwhelming experimental evidence accumulated over the past decade indicates that microRNAs (miRNAs) are key regulators of gene expression in animals and plants and play important roles in development, homeostasis, and disease. The miR-17-92 family of miRNA clusters is composed of 3 related, highly conserved, polycistronic miRNA genes that collectively encode for a total of 15 miRNAs. We discuss recent studies demonstrating that these miRNAs are essential for vertebrate development and homeostasis. We also show how their mutation or deregulation contributes to the pathogenesis of a variety of human diseases, including cancer and congenital developmental defects. Finally, we discuss the current evidence suggesting how the different miRNAs encoded by these 3 clusters can functionally cooperate to fine-tune signaling and developmental pathways.
                Bookmark

                Author and article information

                Journal
                Toxicological Sciences
                Toxicol. Sci.
                Oxford University Press (OUP)
                1096-6080
                1096-0929
                February 25 2016
                March 10 2016
                : 150
                : 1
                : 84-96
                Article
                10.1093/toxsci/kfv313
                4830238
                26660634
                e09df5aa-ab6d-48c7-a27f-f22811e24c24
                © 2016
                History

                Comments

                Comment on this article

                scite_

                Similar content2,156

                Cited by25

                Most referenced authors639